Solve for v
v=-\frac{6}{7}\approx -0.857142857
Share
Copied to clipboard
2v-6v=3\left(v+2\right)
Variable v cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 6v^{2}, the least common multiple of 3v,v,2v^{2}.
-4v=3\left(v+2\right)
Combine 2v and -6v to get -4v.
-4v=3v+6
Use the distributive property to multiply 3 by v+2.
-4v-3v=6
Subtract 3v from both sides.
-7v=6
Combine -4v and -3v to get -7v.
v=\frac{6}{-7}
Divide both sides by -7.
v=-\frac{6}{7}
Fraction \frac{6}{-7} can be rewritten as -\frac{6}{7} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}