Solve for x
x=10
x=30
Graph
Share
Copied to clipboard
\frac{1}{3}x^{2}+\frac{80}{3}x=x^{2}+200
Use the distributive property to multiply \frac{1}{3}x by x+80.
\frac{1}{3}x^{2}+\frac{80}{3}x-x^{2}=200
Subtract x^{2} from both sides.
-\frac{2}{3}x^{2}+\frac{80}{3}x=200
Combine \frac{1}{3}x^{2} and -x^{2} to get -\frac{2}{3}x^{2}.
-\frac{2}{3}x^{2}+\frac{80}{3}x-200=0
Subtract 200 from both sides.
x=\frac{-\frac{80}{3}±\sqrt{\left(\frac{80}{3}\right)^{2}-4\left(-\frac{2}{3}\right)\left(-200\right)}}{2\left(-\frac{2}{3}\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -\frac{2}{3} for a, \frac{80}{3} for b, and -200 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\frac{80}{3}±\sqrt{\frac{6400}{9}-4\left(-\frac{2}{3}\right)\left(-200\right)}}{2\left(-\frac{2}{3}\right)}
Square \frac{80}{3} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\frac{80}{3}±\sqrt{\frac{6400}{9}+\frac{8}{3}\left(-200\right)}}{2\left(-\frac{2}{3}\right)}
Multiply -4 times -\frac{2}{3}.
x=\frac{-\frac{80}{3}±\sqrt{\frac{6400}{9}-\frac{1600}{3}}}{2\left(-\frac{2}{3}\right)}
Multiply \frac{8}{3} times -200.
x=\frac{-\frac{80}{3}±\sqrt{\frac{1600}{9}}}{2\left(-\frac{2}{3}\right)}
Add \frac{6400}{9} to -\frac{1600}{3} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-\frac{80}{3}±\frac{40}{3}}{2\left(-\frac{2}{3}\right)}
Take the square root of \frac{1600}{9}.
x=\frac{-\frac{80}{3}±\frac{40}{3}}{-\frac{4}{3}}
Multiply 2 times -\frac{2}{3}.
x=-\frac{\frac{40}{3}}{-\frac{4}{3}}
Now solve the equation x=\frac{-\frac{80}{3}±\frac{40}{3}}{-\frac{4}{3}} when ± is plus. Add -\frac{80}{3} to \frac{40}{3} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=10
Divide -\frac{40}{3} by -\frac{4}{3} by multiplying -\frac{40}{3} by the reciprocal of -\frac{4}{3}.
x=-\frac{40}{-\frac{4}{3}}
Now solve the equation x=\frac{-\frac{80}{3}±\frac{40}{3}}{-\frac{4}{3}} when ± is minus. Subtract \frac{40}{3} from -\frac{80}{3} by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
x=30
Divide -40 by -\frac{4}{3} by multiplying -40 by the reciprocal of -\frac{4}{3}.
x=10 x=30
The equation is now solved.
\frac{1}{3}x^{2}+\frac{80}{3}x=x^{2}+200
Use the distributive property to multiply \frac{1}{3}x by x+80.
\frac{1}{3}x^{2}+\frac{80}{3}x-x^{2}=200
Subtract x^{2} from both sides.
-\frac{2}{3}x^{2}+\frac{80}{3}x=200
Combine \frac{1}{3}x^{2} and -x^{2} to get -\frac{2}{3}x^{2}.
\frac{-\frac{2}{3}x^{2}+\frac{80}{3}x}{-\frac{2}{3}}=\frac{200}{-\frac{2}{3}}
Divide both sides of the equation by -\frac{2}{3}, which is the same as multiplying both sides by the reciprocal of the fraction.
x^{2}+\frac{\frac{80}{3}}{-\frac{2}{3}}x=\frac{200}{-\frac{2}{3}}
Dividing by -\frac{2}{3} undoes the multiplication by -\frac{2}{3}.
x^{2}-40x=\frac{200}{-\frac{2}{3}}
Divide \frac{80}{3} by -\frac{2}{3} by multiplying \frac{80}{3} by the reciprocal of -\frac{2}{3}.
x^{2}-40x=-300
Divide 200 by -\frac{2}{3} by multiplying 200 by the reciprocal of -\frac{2}{3}.
x^{2}-40x+\left(-20\right)^{2}=-300+\left(-20\right)^{2}
Divide -40, the coefficient of the x term, by 2 to get -20. Then add the square of -20 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-40x+400=-300+400
Square -20.
x^{2}-40x+400=100
Add -300 to 400.
\left(x-20\right)^{2}=100
Factor x^{2}-40x+400. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-20\right)^{2}}=\sqrt{100}
Take the square root of both sides of the equation.
x-20=10 x-20=-10
Simplify.
x=30 x=10
Add 20 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}