Solve for u
u = \frac{75}{7} = 10\frac{5}{7} \approx 10.714285714
Share
Copied to clipboard
\frac{1}{3}u-\frac{5}{4}+\frac{1}{4}u=5
Add \frac{1}{4}u to both sides.
\frac{7}{12}u-\frac{5}{4}=5
Combine \frac{1}{3}u and \frac{1}{4}u to get \frac{7}{12}u.
\frac{7}{12}u=5+\frac{5}{4}
Add \frac{5}{4} to both sides.
\frac{7}{12}u=\frac{20}{4}+\frac{5}{4}
Convert 5 to fraction \frac{20}{4}.
\frac{7}{12}u=\frac{20+5}{4}
Since \frac{20}{4} and \frac{5}{4} have the same denominator, add them by adding their numerators.
\frac{7}{12}u=\frac{25}{4}
Add 20 and 5 to get 25.
u=\frac{25}{4}\times \frac{12}{7}
Multiply both sides by \frac{12}{7}, the reciprocal of \frac{7}{12}.
u=\frac{25\times 12}{4\times 7}
Multiply \frac{25}{4} times \frac{12}{7} by multiplying numerator times numerator and denominator times denominator.
u=\frac{300}{28}
Do the multiplications in the fraction \frac{25\times 12}{4\times 7}.
u=\frac{75}{7}
Reduce the fraction \frac{300}{28} to lowest terms by extracting and canceling out 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}