Solve for n
n=4
Share
Copied to clipboard
\frac{1}{3}n-\frac{1}{4}\times 6-\frac{1}{4}\left(-1\right)n=\frac{5}{6}
Use the distributive property to multiply -\frac{1}{4} by 6-n.
\frac{1}{3}n+\frac{-6}{4}-\frac{1}{4}\left(-1\right)n=\frac{5}{6}
Express -\frac{1}{4}\times 6 as a single fraction.
\frac{1}{3}n-\frac{3}{2}-\frac{1}{4}\left(-1\right)n=\frac{5}{6}
Reduce the fraction \frac{-6}{4} to lowest terms by extracting and canceling out 2.
\frac{1}{3}n-\frac{3}{2}+\frac{1}{4}n=\frac{5}{6}
Multiply -\frac{1}{4} and -1 to get \frac{1}{4}.
\frac{7}{12}n-\frac{3}{2}=\frac{5}{6}
Combine \frac{1}{3}n and \frac{1}{4}n to get \frac{7}{12}n.
\frac{7}{12}n=\frac{5}{6}+\frac{3}{2}
Add \frac{3}{2} to both sides.
\frac{7}{12}n=\frac{5}{6}+\frac{9}{6}
Least common multiple of 6 and 2 is 6. Convert \frac{5}{6} and \frac{3}{2} to fractions with denominator 6.
\frac{7}{12}n=\frac{5+9}{6}
Since \frac{5}{6} and \frac{9}{6} have the same denominator, add them by adding their numerators.
\frac{7}{12}n=\frac{14}{6}
Add 5 and 9 to get 14.
\frac{7}{12}n=\frac{7}{3}
Reduce the fraction \frac{14}{6} to lowest terms by extracting and canceling out 2.
n=\frac{7}{3}\times \frac{12}{7}
Multiply both sides by \frac{12}{7}, the reciprocal of \frac{7}{12}.
n=\frac{7\times 12}{3\times 7}
Multiply \frac{7}{3} times \frac{12}{7} by multiplying numerator times numerator and denominator times denominator.
n=\frac{12}{3}
Cancel out 7 in both numerator and denominator.
n=4
Divide 12 by 3 to get 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}