Solve for x (complex solution)
\left\{\begin{matrix}x=\frac{2S}{3y}\text{, }&y\neq 0\\x\in \mathrm{C}\text{, }&S=0\text{ and }y=0\end{matrix}\right.
Solve for S
S=\frac{3xy}{2}
Solve for x
\left\{\begin{matrix}x=\frac{2S}{3y}\text{, }&y\neq 0\\x\in \mathrm{R}\text{, }&S=0\text{ and }y=0\end{matrix}\right.
Graph
Share
Copied to clipboard
\frac{1}{2}xy=\frac{1}{3}S
Swap sides so that all variable terms are on the left hand side.
\frac{y}{2}x=\frac{S}{3}
The equation is in standard form.
\frac{2\times \frac{y}{2}x}{y}=\frac{S}{3\times \frac{y}{2}}
Divide both sides by \frac{1}{2}y.
x=\frac{S}{3\times \frac{y}{2}}
Dividing by \frac{1}{2}y undoes the multiplication by \frac{1}{2}y.
x=\frac{2S}{3y}
Divide \frac{S}{3} by \frac{1}{2}y.
\frac{1}{3}S=\frac{xy}{2}
The equation is in standard form.
\frac{\frac{1}{3}S}{\frac{1}{3}}=\frac{xy}{\frac{1}{3}\times 2}
Multiply both sides by 3.
S=\frac{xy}{\frac{1}{3}\times 2}
Dividing by \frac{1}{3} undoes the multiplication by \frac{1}{3}.
S=\frac{3xy}{2}
Divide \frac{xy}{2} by \frac{1}{3} by multiplying \frac{xy}{2} by the reciprocal of \frac{1}{3}.
\frac{1}{2}xy=\frac{1}{3}S
Swap sides so that all variable terms are on the left hand side.
\frac{y}{2}x=\frac{S}{3}
The equation is in standard form.
\frac{2\times \frac{y}{2}x}{y}=\frac{S}{3\times \frac{y}{2}}
Divide both sides by \frac{1}{2}y.
x=\frac{S}{3\times \frac{y}{2}}
Dividing by \frac{1}{2}y undoes the multiplication by \frac{1}{2}y.
x=\frac{2S}{3y}
Divide \frac{S}{3} by \frac{1}{2}y.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}