Evaluate
-\frac{101}{24}\approx -4.208333333
Factor
-\frac{101}{24} = -4\frac{5}{24} = -4.208333333333333
Share
Copied to clipboard
\frac{2}{3}\times \left(\frac{1}{4}\right)^{2}-\frac{1}{4}-4
Multiply \frac{1}{3} and 2 to get \frac{2}{3}.
\frac{2}{3}\times \frac{1}{16}-\frac{1}{4}-4
Calculate \frac{1}{4} to the power of 2 and get \frac{1}{16}.
\frac{2\times 1}{3\times 16}-\frac{1}{4}-4
Multiply \frac{2}{3} times \frac{1}{16} by multiplying numerator times numerator and denominator times denominator.
\frac{2}{48}-\frac{1}{4}-4
Do the multiplications in the fraction \frac{2\times 1}{3\times 16}.
\frac{1}{24}-\frac{1}{4}-4
Reduce the fraction \frac{2}{48} to lowest terms by extracting and canceling out 2.
\frac{1}{24}-\frac{6}{24}-4
Least common multiple of 24 and 4 is 24. Convert \frac{1}{24} and \frac{1}{4} to fractions with denominator 24.
\frac{1-6}{24}-4
Since \frac{1}{24} and \frac{6}{24} have the same denominator, subtract them by subtracting their numerators.
-\frac{5}{24}-4
Subtract 6 from 1 to get -5.
-\frac{5}{24}-\frac{96}{24}
Convert 4 to fraction \frac{96}{24}.
\frac{-5-96}{24}
Since -\frac{5}{24} and \frac{96}{24} have the same denominator, subtract them by subtracting their numerators.
-\frac{101}{24}
Subtract 96 from -5 to get -101.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}