Solve for x
x=-17
Graph
Share
Copied to clipboard
\frac{1}{3}x+\frac{1}{3}\left(-8\right)=3x-2\left(x-1\right)+\frac{20}{3}
Use the distributive property to multiply \frac{1}{3} by x-8.
\frac{1}{3}x+\frac{-8}{3}=3x-2\left(x-1\right)+\frac{20}{3}
Multiply \frac{1}{3} and -8 to get \frac{-8}{3}.
\frac{1}{3}x-\frac{8}{3}=3x-2\left(x-1\right)+\frac{20}{3}
Fraction \frac{-8}{3} can be rewritten as -\frac{8}{3} by extracting the negative sign.
\frac{1}{3}x-\frac{8}{3}=3x-2x+2+\frac{20}{3}
Use the distributive property to multiply -2 by x-1.
\frac{1}{3}x-\frac{8}{3}=x+2+\frac{20}{3}
Combine 3x and -2x to get x.
\frac{1}{3}x-\frac{8}{3}=x+\frac{6}{3}+\frac{20}{3}
Convert 2 to fraction \frac{6}{3}.
\frac{1}{3}x-\frac{8}{3}=x+\frac{6+20}{3}
Since \frac{6}{3} and \frac{20}{3} have the same denominator, add them by adding their numerators.
\frac{1}{3}x-\frac{8}{3}=x+\frac{26}{3}
Add 6 and 20 to get 26.
\frac{1}{3}x-\frac{8}{3}-x=\frac{26}{3}
Subtract x from both sides.
-\frac{2}{3}x-\frac{8}{3}=\frac{26}{3}
Combine \frac{1}{3}x and -x to get -\frac{2}{3}x.
-\frac{2}{3}x=\frac{26}{3}+\frac{8}{3}
Add \frac{8}{3} to both sides.
-\frac{2}{3}x=\frac{26+8}{3}
Since \frac{26}{3} and \frac{8}{3} have the same denominator, add them by adding their numerators.
-\frac{2}{3}x=\frac{34}{3}
Add 26 and 8 to get 34.
x=\frac{34}{3}\left(-\frac{3}{2}\right)
Multiply both sides by -\frac{3}{2}, the reciprocal of -\frac{2}{3}.
x=\frac{34\left(-3\right)}{3\times 2}
Multiply \frac{34}{3} times -\frac{3}{2} by multiplying numerator times numerator and denominator times denominator.
x=\frac{-102}{6}
Do the multiplications in the fraction \frac{34\left(-3\right)}{3\times 2}.
x=-17
Divide -102 by 6 to get -17.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}