Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{1}{3}\left(x^{2}-6x+9\right)+\frac{1}{6}\left(x+2\right)^{2}=\left(\frac{1}{2}x-1\right)\left(\frac{1}{2}x+1\right)+\frac{1}{4}\left(x-2\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-3\right)^{2}.
\frac{1}{3}x^{2}-2x+3+\frac{1}{6}\left(x+2\right)^{2}=\left(\frac{1}{2}x-1\right)\left(\frac{1}{2}x+1\right)+\frac{1}{4}\left(x-2\right)^{2}
Use the distributive property to multiply \frac{1}{3} by x^{2}-6x+9.
\frac{1}{3}x^{2}-2x+3+\frac{1}{6}\left(x^{2}+4x+4\right)=\left(\frac{1}{2}x-1\right)\left(\frac{1}{2}x+1\right)+\frac{1}{4}\left(x-2\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+2\right)^{2}.
\frac{1}{3}x^{2}-2x+3+\frac{1}{6}x^{2}+\frac{2}{3}x+\frac{2}{3}=\left(\frac{1}{2}x-1\right)\left(\frac{1}{2}x+1\right)+\frac{1}{4}\left(x-2\right)^{2}
Use the distributive property to multiply \frac{1}{6} by x^{2}+4x+4.
\frac{1}{2}x^{2}-2x+3+\frac{2}{3}x+\frac{2}{3}=\left(\frac{1}{2}x-1\right)\left(\frac{1}{2}x+1\right)+\frac{1}{4}\left(x-2\right)^{2}
Combine \frac{1}{3}x^{2} and \frac{1}{6}x^{2} to get \frac{1}{2}x^{2}.
\frac{1}{2}x^{2}-\frac{4}{3}x+3+\frac{2}{3}=\left(\frac{1}{2}x-1\right)\left(\frac{1}{2}x+1\right)+\frac{1}{4}\left(x-2\right)^{2}
Combine -2x and \frac{2}{3}x to get -\frac{4}{3}x.
\frac{1}{2}x^{2}-\frac{4}{3}x+\frac{11}{3}=\left(\frac{1}{2}x-1\right)\left(\frac{1}{2}x+1\right)+\frac{1}{4}\left(x-2\right)^{2}
Add 3 and \frac{2}{3} to get \frac{11}{3}.
\frac{1}{2}x^{2}-\frac{4}{3}x+\frac{11}{3}=\left(\frac{1}{2}x\right)^{2}-1+\frac{1}{4}\left(x-2\right)^{2}
Consider \left(\frac{1}{2}x-1\right)\left(\frac{1}{2}x+1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 1.
\frac{1}{2}x^{2}-\frac{4}{3}x+\frac{11}{3}=\left(\frac{1}{2}\right)^{2}x^{2}-1+\frac{1}{4}\left(x-2\right)^{2}
Expand \left(\frac{1}{2}x\right)^{2}.
\frac{1}{2}x^{2}-\frac{4}{3}x+\frac{11}{3}=\frac{1}{4}x^{2}-1+\frac{1}{4}\left(x-2\right)^{2}
Calculate \frac{1}{2} to the power of 2 and get \frac{1}{4}.
\frac{1}{2}x^{2}-\frac{4}{3}x+\frac{11}{3}=\frac{1}{4}x^{2}-1+\frac{1}{4}\left(x^{2}-4x+4\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-2\right)^{2}.
\frac{1}{2}x^{2}-\frac{4}{3}x+\frac{11}{3}=\frac{1}{4}x^{2}-1+\frac{1}{4}x^{2}-x+1
Use the distributive property to multiply \frac{1}{4} by x^{2}-4x+4.
\frac{1}{2}x^{2}-\frac{4}{3}x+\frac{11}{3}=\frac{1}{2}x^{2}-1-x+1
Combine \frac{1}{4}x^{2} and \frac{1}{4}x^{2} to get \frac{1}{2}x^{2}.
\frac{1}{2}x^{2}-\frac{4}{3}x+\frac{11}{3}=\frac{1}{2}x^{2}-x
Add -1 and 1 to get 0.
\frac{1}{2}x^{2}-\frac{4}{3}x+\frac{11}{3}-\frac{1}{2}x^{2}=-x
Subtract \frac{1}{2}x^{2} from both sides.
-\frac{4}{3}x+\frac{11}{3}=-x
Combine \frac{1}{2}x^{2} and -\frac{1}{2}x^{2} to get 0.
-\frac{4}{3}x+\frac{11}{3}+x=0
Add x to both sides.
-\frac{1}{3}x+\frac{11}{3}=0
Combine -\frac{4}{3}x and x to get -\frac{1}{3}x.
-\frac{1}{3}x=-\frac{11}{3}
Subtract \frac{11}{3} from both sides. Anything subtracted from zero gives its negation.
x=-\frac{11}{3}\left(-3\right)
Multiply both sides by -3, the reciprocal of -\frac{1}{3}.
x=11
Multiply -\frac{11}{3} and -3 to get 11.