Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{1}{3}x+\frac{1}{3}\left(-2\right)-\frac{1}{4}\left(x-5\right)
Use the distributive property to multiply \frac{1}{3} by x-2.
\frac{1}{3}x+\frac{-2}{3}-\frac{1}{4}\left(x-5\right)
Multiply \frac{1}{3} and -2 to get \frac{-2}{3}.
\frac{1}{3}x-\frac{2}{3}-\frac{1}{4}\left(x-5\right)
Fraction \frac{-2}{3} can be rewritten as -\frac{2}{3} by extracting the negative sign.
\frac{1}{3}x-\frac{2}{3}-\frac{1}{4}x-\frac{1}{4}\left(-5\right)
Use the distributive property to multiply -\frac{1}{4} by x-5.
\frac{1}{3}x-\frac{2}{3}-\frac{1}{4}x+\frac{-\left(-5\right)}{4}
Express -\frac{1}{4}\left(-5\right) as a single fraction.
\frac{1}{3}x-\frac{2}{3}-\frac{1}{4}x+\frac{5}{4}
Multiply -1 and -5 to get 5.
\frac{1}{12}x-\frac{2}{3}+\frac{5}{4}
Combine \frac{1}{3}x and -\frac{1}{4}x to get \frac{1}{12}x.
\frac{1}{12}x-\frac{8}{12}+\frac{15}{12}
Least common multiple of 3 and 4 is 12. Convert -\frac{2}{3} and \frac{5}{4} to fractions with denominator 12.
\frac{1}{12}x+\frac{-8+15}{12}
Since -\frac{8}{12} and \frac{15}{12} have the same denominator, add them by adding their numerators.
\frac{1}{12}x+\frac{7}{12}
Add -8 and 15 to get 7.
\frac{1}{3}x+\frac{1}{3}\left(-2\right)-\frac{1}{4}\left(x-5\right)
Use the distributive property to multiply \frac{1}{3} by x-2.
\frac{1}{3}x+\frac{-2}{3}-\frac{1}{4}\left(x-5\right)
Multiply \frac{1}{3} and -2 to get \frac{-2}{3}.
\frac{1}{3}x-\frac{2}{3}-\frac{1}{4}\left(x-5\right)
Fraction \frac{-2}{3} can be rewritten as -\frac{2}{3} by extracting the negative sign.
\frac{1}{3}x-\frac{2}{3}-\frac{1}{4}x-\frac{1}{4}\left(-5\right)
Use the distributive property to multiply -\frac{1}{4} by x-5.
\frac{1}{3}x-\frac{2}{3}-\frac{1}{4}x+\frac{-\left(-5\right)}{4}
Express -\frac{1}{4}\left(-5\right) as a single fraction.
\frac{1}{3}x-\frac{2}{3}-\frac{1}{4}x+\frac{5}{4}
Multiply -1 and -5 to get 5.
\frac{1}{12}x-\frac{2}{3}+\frac{5}{4}
Combine \frac{1}{3}x and -\frac{1}{4}x to get \frac{1}{12}x.
\frac{1}{12}x-\frac{8}{12}+\frac{15}{12}
Least common multiple of 3 and 4 is 12. Convert -\frac{2}{3} and \frac{5}{4} to fractions with denominator 12.
\frac{1}{12}x+\frac{-8+15}{12}
Since -\frac{8}{12} and \frac{15}{12} have the same denominator, add them by adding their numerators.
\frac{1}{12}x+\frac{7}{12}
Add -8 and 15 to get 7.