Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

2\left(x+2\right)^{2}-3-\left(4-x^{2}\right)=9\left(x+\frac{1}{3}\right)^{2}
Multiply both sides of the equation by 6, the least common multiple of 3,2,6.
2\left(x^{2}+4x+4\right)-3-\left(4-x^{2}\right)=9\left(x+\frac{1}{3}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+2\right)^{2}.
2x^{2}+8x+8-3-\left(4-x^{2}\right)=9\left(x+\frac{1}{3}\right)^{2}
Use the distributive property to multiply 2 by x^{2}+4x+4.
2x^{2}+8x+5-\left(4-x^{2}\right)=9\left(x+\frac{1}{3}\right)^{2}
Subtract 3 from 8 to get 5.
2x^{2}+8x+5-4+x^{2}=9\left(x+\frac{1}{3}\right)^{2}
To find the opposite of 4-x^{2}, find the opposite of each term.
2x^{2}+8x+1+x^{2}=9\left(x+\frac{1}{3}\right)^{2}
Subtract 4 from 5 to get 1.
3x^{2}+8x+1=9\left(x+\frac{1}{3}\right)^{2}
Combine 2x^{2} and x^{2} to get 3x^{2}.
3x^{2}+8x+1=9\left(x^{2}+\frac{2}{3}x+\frac{1}{9}\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+\frac{1}{3}\right)^{2}.
3x^{2}+8x+1=9x^{2}+6x+1
Use the distributive property to multiply 9 by x^{2}+\frac{2}{3}x+\frac{1}{9}.
3x^{2}+8x+1-9x^{2}=6x+1
Subtract 9x^{2} from both sides.
-6x^{2}+8x+1=6x+1
Combine 3x^{2} and -9x^{2} to get -6x^{2}.
-6x^{2}+8x+1-6x=1
Subtract 6x from both sides.
-6x^{2}+2x+1=1
Combine 8x and -6x to get 2x.
-6x^{2}+2x+1-1=0
Subtract 1 from both sides.
-6x^{2}+2x=0
Subtract 1 from 1 to get 0.
x\left(-6x+2\right)=0
Factor out x.
x=0 x=\frac{1}{3}
To find equation solutions, solve x=0 and -6x+2=0.
2\left(x+2\right)^{2}-3-\left(4-x^{2}\right)=9\left(x+\frac{1}{3}\right)^{2}
Multiply both sides of the equation by 6, the least common multiple of 3,2,6.
2\left(x^{2}+4x+4\right)-3-\left(4-x^{2}\right)=9\left(x+\frac{1}{3}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+2\right)^{2}.
2x^{2}+8x+8-3-\left(4-x^{2}\right)=9\left(x+\frac{1}{3}\right)^{2}
Use the distributive property to multiply 2 by x^{2}+4x+4.
2x^{2}+8x+5-\left(4-x^{2}\right)=9\left(x+\frac{1}{3}\right)^{2}
Subtract 3 from 8 to get 5.
2x^{2}+8x+5-4+x^{2}=9\left(x+\frac{1}{3}\right)^{2}
To find the opposite of 4-x^{2}, find the opposite of each term.
2x^{2}+8x+1+x^{2}=9\left(x+\frac{1}{3}\right)^{2}
Subtract 4 from 5 to get 1.
3x^{2}+8x+1=9\left(x+\frac{1}{3}\right)^{2}
Combine 2x^{2} and x^{2} to get 3x^{2}.
3x^{2}+8x+1=9\left(x^{2}+\frac{2}{3}x+\frac{1}{9}\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+\frac{1}{3}\right)^{2}.
3x^{2}+8x+1=9x^{2}+6x+1
Use the distributive property to multiply 9 by x^{2}+\frac{2}{3}x+\frac{1}{9}.
3x^{2}+8x+1-9x^{2}=6x+1
Subtract 9x^{2} from both sides.
-6x^{2}+8x+1=6x+1
Combine 3x^{2} and -9x^{2} to get -6x^{2}.
-6x^{2}+8x+1-6x=1
Subtract 6x from both sides.
-6x^{2}+2x+1=1
Combine 8x and -6x to get 2x.
-6x^{2}+2x+1-1=0
Subtract 1 from both sides.
-6x^{2}+2x=0
Subtract 1 from 1 to get 0.
x=\frac{-2±\sqrt{2^{2}}}{2\left(-6\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -6 for a, 2 for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±2}{2\left(-6\right)}
Take the square root of 2^{2}.
x=\frac{-2±2}{-12}
Multiply 2 times -6.
x=\frac{0}{-12}
Now solve the equation x=\frac{-2±2}{-12} when ± is plus. Add -2 to 2.
x=0
Divide 0 by -12.
x=-\frac{4}{-12}
Now solve the equation x=\frac{-2±2}{-12} when ± is minus. Subtract 2 from -2.
x=\frac{1}{3}
Reduce the fraction \frac{-4}{-12} to lowest terms by extracting and canceling out 4.
x=0 x=\frac{1}{3}
The equation is now solved.
2\left(x+2\right)^{2}-3-\left(4-x^{2}\right)=9\left(x+\frac{1}{3}\right)^{2}
Multiply both sides of the equation by 6, the least common multiple of 3,2,6.
2\left(x^{2}+4x+4\right)-3-\left(4-x^{2}\right)=9\left(x+\frac{1}{3}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+2\right)^{2}.
2x^{2}+8x+8-3-\left(4-x^{2}\right)=9\left(x+\frac{1}{3}\right)^{2}
Use the distributive property to multiply 2 by x^{2}+4x+4.
2x^{2}+8x+5-\left(4-x^{2}\right)=9\left(x+\frac{1}{3}\right)^{2}
Subtract 3 from 8 to get 5.
2x^{2}+8x+5-4+x^{2}=9\left(x+\frac{1}{3}\right)^{2}
To find the opposite of 4-x^{2}, find the opposite of each term.
2x^{2}+8x+1+x^{2}=9\left(x+\frac{1}{3}\right)^{2}
Subtract 4 from 5 to get 1.
3x^{2}+8x+1=9\left(x+\frac{1}{3}\right)^{2}
Combine 2x^{2} and x^{2} to get 3x^{2}.
3x^{2}+8x+1=9\left(x^{2}+\frac{2}{3}x+\frac{1}{9}\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+\frac{1}{3}\right)^{2}.
3x^{2}+8x+1=9x^{2}+6x+1
Use the distributive property to multiply 9 by x^{2}+\frac{2}{3}x+\frac{1}{9}.
3x^{2}+8x+1-9x^{2}=6x+1
Subtract 9x^{2} from both sides.
-6x^{2}+8x+1=6x+1
Combine 3x^{2} and -9x^{2} to get -6x^{2}.
-6x^{2}+8x+1-6x=1
Subtract 6x from both sides.
-6x^{2}+2x+1=1
Combine 8x and -6x to get 2x.
-6x^{2}+2x=1-1
Subtract 1 from both sides.
-6x^{2}+2x=0
Subtract 1 from 1 to get 0.
\frac{-6x^{2}+2x}{-6}=\frac{0}{-6}
Divide both sides by -6.
x^{2}+\frac{2}{-6}x=\frac{0}{-6}
Dividing by -6 undoes the multiplication by -6.
x^{2}-\frac{1}{3}x=\frac{0}{-6}
Reduce the fraction \frac{2}{-6} to lowest terms by extracting and canceling out 2.
x^{2}-\frac{1}{3}x=0
Divide 0 by -6.
x^{2}-\frac{1}{3}x+\left(-\frac{1}{6}\right)^{2}=\left(-\frac{1}{6}\right)^{2}
Divide -\frac{1}{3}, the coefficient of the x term, by 2 to get -\frac{1}{6}. Then add the square of -\frac{1}{6} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{1}{3}x+\frac{1}{36}=\frac{1}{36}
Square -\frac{1}{6} by squaring both the numerator and the denominator of the fraction.
\left(x-\frac{1}{6}\right)^{2}=\frac{1}{36}
Factor x^{2}-\frac{1}{3}x+\frac{1}{36}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{6}\right)^{2}}=\sqrt{\frac{1}{36}}
Take the square root of both sides of the equation.
x-\frac{1}{6}=\frac{1}{6} x-\frac{1}{6}=-\frac{1}{6}
Simplify.
x=\frac{1}{3} x=0
Add \frac{1}{6} to both sides of the equation.