Solve for x
x=\frac{1}{6}\approx 0.166666667
Graph
Share
Copied to clipboard
\frac{1}{3}x+\frac{1}{3}-x=\frac{2}{9}
Use the distributive property to multiply \frac{1}{3} by x+1.
-\frac{2}{3}x+\frac{1}{3}=\frac{2}{9}
Combine \frac{1}{3}x and -x to get -\frac{2}{3}x.
-\frac{2}{3}x=\frac{2}{9}-\frac{1}{3}
Subtract \frac{1}{3} from both sides.
-\frac{2}{3}x=\frac{2}{9}-\frac{3}{9}
Least common multiple of 9 and 3 is 9. Convert \frac{2}{9} and \frac{1}{3} to fractions with denominator 9.
-\frac{2}{3}x=\frac{2-3}{9}
Since \frac{2}{9} and \frac{3}{9} have the same denominator, subtract them by subtracting their numerators.
-\frac{2}{3}x=-\frac{1}{9}
Subtract 3 from 2 to get -1.
x=-\frac{1}{9}\left(-\frac{3}{2}\right)
Multiply both sides by -\frac{3}{2}, the reciprocal of -\frac{2}{3}.
x=\frac{-\left(-3\right)}{9\times 2}
Multiply -\frac{1}{9} times -\frac{3}{2} by multiplying numerator times numerator and denominator times denominator.
x=\frac{3}{18}
Do the multiplications in the fraction \frac{-\left(-3\right)}{9\times 2}.
x=\frac{1}{6}
Reduce the fraction \frac{3}{18} to lowest terms by extracting and canceling out 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}