Solve for x
x=4
Graph
Share
Copied to clipboard
\frac{1}{3}x+\frac{1}{3}-\frac{3}{4}\left(x-2\right)=\frac{1}{6}
Use the distributive property to multiply \frac{1}{3} by x+1.
\frac{1}{3}x+\frac{1}{3}-\frac{3}{4}x-\frac{3}{4}\left(-2\right)=\frac{1}{6}
Use the distributive property to multiply -\frac{3}{4} by x-2.
\frac{1}{3}x+\frac{1}{3}-\frac{3}{4}x+\frac{-3\left(-2\right)}{4}=\frac{1}{6}
Express -\frac{3}{4}\left(-2\right) as a single fraction.
\frac{1}{3}x+\frac{1}{3}-\frac{3}{4}x+\frac{6}{4}=\frac{1}{6}
Multiply -3 and -2 to get 6.
\frac{1}{3}x+\frac{1}{3}-\frac{3}{4}x+\frac{3}{2}=\frac{1}{6}
Reduce the fraction \frac{6}{4} to lowest terms by extracting and canceling out 2.
-\frac{5}{12}x+\frac{1}{3}+\frac{3}{2}=\frac{1}{6}
Combine \frac{1}{3}x and -\frac{3}{4}x to get -\frac{5}{12}x.
-\frac{5}{12}x+\frac{2}{6}+\frac{9}{6}=\frac{1}{6}
Least common multiple of 3 and 2 is 6. Convert \frac{1}{3} and \frac{3}{2} to fractions with denominator 6.
-\frac{5}{12}x+\frac{2+9}{6}=\frac{1}{6}
Since \frac{2}{6} and \frac{9}{6} have the same denominator, add them by adding their numerators.
-\frac{5}{12}x+\frac{11}{6}=\frac{1}{6}
Add 2 and 9 to get 11.
-\frac{5}{12}x=\frac{1}{6}-\frac{11}{6}
Subtract \frac{11}{6} from both sides.
-\frac{5}{12}x=\frac{1-11}{6}
Since \frac{1}{6} and \frac{11}{6} have the same denominator, subtract them by subtracting their numerators.
-\frac{5}{12}x=\frac{-10}{6}
Subtract 11 from 1 to get -10.
-\frac{5}{12}x=-\frac{5}{3}
Reduce the fraction \frac{-10}{6} to lowest terms by extracting and canceling out 2.
x=-\frac{5}{3}\left(-\frac{12}{5}\right)
Multiply both sides by -\frac{12}{5}, the reciprocal of -\frac{5}{12}.
x=\frac{-5\left(-12\right)}{3\times 5}
Multiply -\frac{5}{3} times -\frac{12}{5} by multiplying numerator times numerator and denominator times denominator.
x=\frac{60}{15}
Do the multiplications in the fraction \frac{-5\left(-12\right)}{3\times 5}.
x=4
Divide 60 by 15 to get 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}