Solve for r
r=\frac{-16s-57}{5}
Solve for s
s=\frac{-5r-57}{16}
Quiz
Linear Equation
5 problems similar to:
\frac { 1 } { 3 } ( r + 2 s ) - \frac { 1 - 2 s } { 5 } = - 4
Share
Copied to clipboard
5\left(r+2s\right)-3\left(1-2s\right)=-60
Multiply both sides of the equation by 15, the least common multiple of 3,5.
5r+10s-3\left(1-2s\right)=-60
Use the distributive property to multiply 5 by r+2s.
5r+10s-3+6s=-60
Use the distributive property to multiply -3 by 1-2s.
5r+16s-3=-60
Combine 10s and 6s to get 16s.
5r-3=-60-16s
Subtract 16s from both sides.
5r=-60-16s+3
Add 3 to both sides.
5r=-57-16s
Add -60 and 3 to get -57.
5r=-16s-57
The equation is in standard form.
\frac{5r}{5}=\frac{-16s-57}{5}
Divide both sides by 5.
r=\frac{-16s-57}{5}
Dividing by 5 undoes the multiplication by 5.
5\left(r+2s\right)-3\left(1-2s\right)=-60
Multiply both sides of the equation by 15, the least common multiple of 3,5.
5r+10s-3\left(1-2s\right)=-60
Use the distributive property to multiply 5 by r+2s.
5r+10s-3+6s=-60
Use the distributive property to multiply -3 by 1-2s.
5r+16s-3=-60
Combine 10s and 6s to get 16s.
16s-3=-60-5r
Subtract 5r from both sides.
16s=-60-5r+3
Add 3 to both sides.
16s=-57-5r
Add -60 and 3 to get -57.
16s=-5r-57
The equation is in standard form.
\frac{16s}{16}=\frac{-5r-57}{16}
Divide both sides by 16.
s=\frac{-5r-57}{16}
Dividing by 16 undoes the multiplication by 16.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}