Evaluate
\frac{8}{3}\approx 2.666666667
Factor
\frac{2 ^ {3}}{3} = 2\frac{2}{3} = 2.6666666666666665
Graph
Share
Copied to clipboard
\frac{1}{3}\times 9x+\frac{1}{3}\times 5-\frac{1}{2}\left(6x-2\right)
Use the distributive property to multiply \frac{1}{3} by 9x+5.
\frac{9}{3}x+\frac{1}{3}\times 5-\frac{1}{2}\left(6x-2\right)
Multiply \frac{1}{3} and 9 to get \frac{9}{3}.
3x+\frac{1}{3}\times 5-\frac{1}{2}\left(6x-2\right)
Divide 9 by 3 to get 3.
3x+\frac{5}{3}-\frac{1}{2}\left(6x-2\right)
Multiply \frac{1}{3} and 5 to get \frac{5}{3}.
3x+\frac{5}{3}-\frac{1}{2}\times 6x-\frac{1}{2}\left(-2\right)
Use the distributive property to multiply -\frac{1}{2} by 6x-2.
3x+\frac{5}{3}+\frac{-6}{2}x-\frac{1}{2}\left(-2\right)
Express -\frac{1}{2}\times 6 as a single fraction.
3x+\frac{5}{3}-3x-\frac{1}{2}\left(-2\right)
Divide -6 by 2 to get -3.
3x+\frac{5}{3}-3x+\frac{-\left(-2\right)}{2}
Express -\frac{1}{2}\left(-2\right) as a single fraction.
3x+\frac{5}{3}-3x+\frac{2}{2}
Multiply -1 and -2 to get 2.
3x+\frac{5}{3}-3x+1
Divide 2 by 2 to get 1.
\frac{5}{3}+1
Combine 3x and -3x to get 0.
\frac{5}{3}+\frac{3}{3}
Convert 1 to fraction \frac{3}{3}.
\frac{5+3}{3}
Since \frac{5}{3} and \frac{3}{3} have the same denominator, add them by adding their numerators.
\frac{8}{3}
Add 5 and 3 to get 8.
\frac{9x+5-3\left(3x-1\right)}{3}
Factor out \frac{1}{3}.
\frac{8}{3}
Simplify.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}