Solve for x
x=-1
Graph
Share
Copied to clipboard
\frac{1}{3}\times 5x+\frac{1}{3}\times 2-\frac{1}{6}\left(4x-1\right)=\frac{1}{12}\left(-3x-7\right)+\frac{1}{6}
Use the distributive property to multiply \frac{1}{3} by 5x+2.
\frac{5}{3}x+\frac{1}{3}\times 2-\frac{1}{6}\left(4x-1\right)=\frac{1}{12}\left(-3x-7\right)+\frac{1}{6}
Multiply \frac{1}{3} and 5 to get \frac{5}{3}.
\frac{5}{3}x+\frac{2}{3}-\frac{1}{6}\left(4x-1\right)=\frac{1}{12}\left(-3x-7\right)+\frac{1}{6}
Multiply \frac{1}{3} and 2 to get \frac{2}{3}.
\frac{5}{3}x+\frac{2}{3}-\frac{1}{6}\times 4x-\frac{1}{6}\left(-1\right)=\frac{1}{12}\left(-3x-7\right)+\frac{1}{6}
Use the distributive property to multiply -\frac{1}{6} by 4x-1.
\frac{5}{3}x+\frac{2}{3}+\frac{-4}{6}x-\frac{1}{6}\left(-1\right)=\frac{1}{12}\left(-3x-7\right)+\frac{1}{6}
Express -\frac{1}{6}\times 4 as a single fraction.
\frac{5}{3}x+\frac{2}{3}-\frac{2}{3}x-\frac{1}{6}\left(-1\right)=\frac{1}{12}\left(-3x-7\right)+\frac{1}{6}
Reduce the fraction \frac{-4}{6} to lowest terms by extracting and canceling out 2.
\frac{5}{3}x+\frac{2}{3}-\frac{2}{3}x+\frac{1}{6}=\frac{1}{12}\left(-3x-7\right)+\frac{1}{6}
Multiply -\frac{1}{6} and -1 to get \frac{1}{6}.
x+\frac{2}{3}+\frac{1}{6}=\frac{1}{12}\left(-3x-7\right)+\frac{1}{6}
Combine \frac{5}{3}x and -\frac{2}{3}x to get x.
x+\frac{4}{6}+\frac{1}{6}=\frac{1}{12}\left(-3x-7\right)+\frac{1}{6}
Least common multiple of 3 and 6 is 6. Convert \frac{2}{3} and \frac{1}{6} to fractions with denominator 6.
x+\frac{4+1}{6}=\frac{1}{12}\left(-3x-7\right)+\frac{1}{6}
Since \frac{4}{6} and \frac{1}{6} have the same denominator, add them by adding their numerators.
x+\frac{5}{6}=\frac{1}{12}\left(-3x-7\right)+\frac{1}{6}
Add 4 and 1 to get 5.
x+\frac{5}{6}=\frac{1}{12}\left(-3\right)x+\frac{1}{12}\left(-7\right)+\frac{1}{6}
Use the distributive property to multiply \frac{1}{12} by -3x-7.
x+\frac{5}{6}=\frac{-3}{12}x+\frac{1}{12}\left(-7\right)+\frac{1}{6}
Multiply \frac{1}{12} and -3 to get \frac{-3}{12}.
x+\frac{5}{6}=-\frac{1}{4}x+\frac{1}{12}\left(-7\right)+\frac{1}{6}
Reduce the fraction \frac{-3}{12} to lowest terms by extracting and canceling out 3.
x+\frac{5}{6}=-\frac{1}{4}x+\frac{-7}{12}+\frac{1}{6}
Multiply \frac{1}{12} and -7 to get \frac{-7}{12}.
x+\frac{5}{6}=-\frac{1}{4}x-\frac{7}{12}+\frac{1}{6}
Fraction \frac{-7}{12} can be rewritten as -\frac{7}{12} by extracting the negative sign.
x+\frac{5}{6}=-\frac{1}{4}x-\frac{7}{12}+\frac{2}{12}
Least common multiple of 12 and 6 is 12. Convert -\frac{7}{12} and \frac{1}{6} to fractions with denominator 12.
x+\frac{5}{6}=-\frac{1}{4}x+\frac{-7+2}{12}
Since -\frac{7}{12} and \frac{2}{12} have the same denominator, add them by adding their numerators.
x+\frac{5}{6}=-\frac{1}{4}x-\frac{5}{12}
Add -7 and 2 to get -5.
x+\frac{5}{6}+\frac{1}{4}x=-\frac{5}{12}
Add \frac{1}{4}x to both sides.
\frac{5}{4}x+\frac{5}{6}=-\frac{5}{12}
Combine x and \frac{1}{4}x to get \frac{5}{4}x.
\frac{5}{4}x=-\frac{5}{12}-\frac{5}{6}
Subtract \frac{5}{6} from both sides.
\frac{5}{4}x=-\frac{5}{12}-\frac{10}{12}
Least common multiple of 12 and 6 is 12. Convert -\frac{5}{12} and \frac{5}{6} to fractions with denominator 12.
\frac{5}{4}x=\frac{-5-10}{12}
Since -\frac{5}{12} and \frac{10}{12} have the same denominator, subtract them by subtracting their numerators.
\frac{5}{4}x=\frac{-15}{12}
Subtract 10 from -5 to get -15.
\frac{5}{4}x=-\frac{5}{4}
Reduce the fraction \frac{-15}{12} to lowest terms by extracting and canceling out 3.
x=-\frac{5}{4}\times \frac{4}{5}
Multiply both sides by \frac{4}{5}, the reciprocal of \frac{5}{4}.
x=\frac{-5\times 4}{4\times 5}
Multiply -\frac{5}{4} times \frac{4}{5} by multiplying numerator times numerator and denominator times denominator.
x=\frac{-5}{5}
Cancel out 4 in both numerator and denominator.
x=-1
Divide -5 by 5 to get -1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}