Solve for x
x=-\frac{5}{8}=-0.625
Graph
Share
Copied to clipboard
2x+\frac{7}{2}=\frac{3}{4}\times 3
Multiply both sides by 3, the reciprocal of \frac{1}{3}.
2x+\frac{7}{2}=\frac{3\times 3}{4}
Express \frac{3}{4}\times 3 as a single fraction.
2x+\frac{7}{2}=\frac{9}{4}
Multiply 3 and 3 to get 9.
2x=\frac{9}{4}-\frac{7}{2}
Subtract \frac{7}{2} from both sides.
2x=\frac{9}{4}-\frac{14}{4}
Least common multiple of 4 and 2 is 4. Convert \frac{9}{4} and \frac{7}{2} to fractions with denominator 4.
2x=\frac{9-14}{4}
Since \frac{9}{4} and \frac{14}{4} have the same denominator, subtract them by subtracting their numerators.
2x=-\frac{5}{4}
Subtract 14 from 9 to get -5.
x=\frac{-\frac{5}{4}}{2}
Divide both sides by 2.
x=\frac{-5}{4\times 2}
Express \frac{-\frac{5}{4}}{2} as a single fraction.
x=\frac{-5}{8}
Multiply 4 and 2 to get 8.
x=-\frac{5}{8}
Fraction \frac{-5}{8} can be rewritten as -\frac{5}{8} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}