Solve for x
x = \frac{79}{29} = 2\frac{21}{29} \approx 2.724137931
Graph
Share
Copied to clipboard
\frac{1}{3}\times 2+\frac{1}{3}\left(-1\right)x-\frac{3}{2}\left(3x-5\right)=-5
Use the distributive property to multiply \frac{1}{3} by 2-x.
\frac{2}{3}+\frac{1}{3}\left(-1\right)x-\frac{3}{2}\left(3x-5\right)=-5
Multiply \frac{1}{3} and 2 to get \frac{2}{3}.
\frac{2}{3}-\frac{1}{3}x-\frac{3}{2}\left(3x-5\right)=-5
Multiply \frac{1}{3} and -1 to get -\frac{1}{3}.
\frac{2}{3}-\frac{1}{3}x-\frac{3}{2}\times 3x-\frac{3}{2}\left(-5\right)=-5
Use the distributive property to multiply -\frac{3}{2} by 3x-5.
\frac{2}{3}-\frac{1}{3}x+\frac{-3\times 3}{2}x-\frac{3}{2}\left(-5\right)=-5
Express -\frac{3}{2}\times 3 as a single fraction.
\frac{2}{3}-\frac{1}{3}x+\frac{-9}{2}x-\frac{3}{2}\left(-5\right)=-5
Multiply -3 and 3 to get -9.
\frac{2}{3}-\frac{1}{3}x-\frac{9}{2}x-\frac{3}{2}\left(-5\right)=-5
Fraction \frac{-9}{2} can be rewritten as -\frac{9}{2} by extracting the negative sign.
\frac{2}{3}-\frac{1}{3}x-\frac{9}{2}x+\frac{-3\left(-5\right)}{2}=-5
Express -\frac{3}{2}\left(-5\right) as a single fraction.
\frac{2}{3}-\frac{1}{3}x-\frac{9}{2}x+\frac{15}{2}=-5
Multiply -3 and -5 to get 15.
\frac{2}{3}-\frac{29}{6}x+\frac{15}{2}=-5
Combine -\frac{1}{3}x and -\frac{9}{2}x to get -\frac{29}{6}x.
\frac{4}{6}-\frac{29}{6}x+\frac{45}{6}=-5
Least common multiple of 3 and 2 is 6. Convert \frac{2}{3} and \frac{15}{2} to fractions with denominator 6.
\frac{4+45}{6}-\frac{29}{6}x=-5
Since \frac{4}{6} and \frac{45}{6} have the same denominator, add them by adding their numerators.
\frac{49}{6}-\frac{29}{6}x=-5
Add 4 and 45 to get 49.
-\frac{29}{6}x=-5-\frac{49}{6}
Subtract \frac{49}{6} from both sides.
-\frac{29}{6}x=-\frac{30}{6}-\frac{49}{6}
Convert -5 to fraction -\frac{30}{6}.
-\frac{29}{6}x=\frac{-30-49}{6}
Since -\frac{30}{6} and \frac{49}{6} have the same denominator, subtract them by subtracting their numerators.
-\frac{29}{6}x=-\frac{79}{6}
Subtract 49 from -30 to get -79.
x=-\frac{79}{6}\left(-\frac{6}{29}\right)
Multiply both sides by -\frac{6}{29}, the reciprocal of -\frac{29}{6}.
x=\frac{-79\left(-6\right)}{6\times 29}
Multiply -\frac{79}{6} times -\frac{6}{29} by multiplying numerator times numerator and denominator times denominator.
x=\frac{474}{174}
Do the multiplications in the fraction \frac{-79\left(-6\right)}{6\times 29}.
x=\frac{79}{29}
Reduce the fraction \frac{474}{174} to lowest terms by extracting and canceling out 6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}