Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{1}{3}\times 2+\frac{1}{3}\left(-1\right)x-\frac{3}{2}\left(3x-5\right)=-5
Use the distributive property to multiply \frac{1}{3} by 2-x.
\frac{2}{3}+\frac{1}{3}\left(-1\right)x-\frac{3}{2}\left(3x-5\right)=-5
Multiply \frac{1}{3} and 2 to get \frac{2}{3}.
\frac{2}{3}-\frac{1}{3}x-\frac{3}{2}\left(3x-5\right)=-5
Multiply \frac{1}{3} and -1 to get -\frac{1}{3}.
\frac{2}{3}-\frac{1}{3}x-\frac{3}{2}\times 3x-\frac{3}{2}\left(-5\right)=-5
Use the distributive property to multiply -\frac{3}{2} by 3x-5.
\frac{2}{3}-\frac{1}{3}x+\frac{-3\times 3}{2}x-\frac{3}{2}\left(-5\right)=-5
Express -\frac{3}{2}\times 3 as a single fraction.
\frac{2}{3}-\frac{1}{3}x+\frac{-9}{2}x-\frac{3}{2}\left(-5\right)=-5
Multiply -3 and 3 to get -9.
\frac{2}{3}-\frac{1}{3}x-\frac{9}{2}x-\frac{3}{2}\left(-5\right)=-5
Fraction \frac{-9}{2} can be rewritten as -\frac{9}{2} by extracting the negative sign.
\frac{2}{3}-\frac{1}{3}x-\frac{9}{2}x+\frac{-3\left(-5\right)}{2}=-5
Express -\frac{3}{2}\left(-5\right) as a single fraction.
\frac{2}{3}-\frac{1}{3}x-\frac{9}{2}x+\frac{15}{2}=-5
Multiply -3 and -5 to get 15.
\frac{2}{3}-\frac{29}{6}x+\frac{15}{2}=-5
Combine -\frac{1}{3}x and -\frac{9}{2}x to get -\frac{29}{6}x.
\frac{4}{6}-\frac{29}{6}x+\frac{45}{6}=-5
Least common multiple of 3 and 2 is 6. Convert \frac{2}{3} and \frac{15}{2} to fractions with denominator 6.
\frac{4+45}{6}-\frac{29}{6}x=-5
Since \frac{4}{6} and \frac{45}{6} have the same denominator, add them by adding their numerators.
\frac{49}{6}-\frac{29}{6}x=-5
Add 4 and 45 to get 49.
-\frac{29}{6}x=-5-\frac{49}{6}
Subtract \frac{49}{6} from both sides.
-\frac{29}{6}x=-\frac{30}{6}-\frac{49}{6}
Convert -5 to fraction -\frac{30}{6}.
-\frac{29}{6}x=\frac{-30-49}{6}
Since -\frac{30}{6} and \frac{49}{6} have the same denominator, subtract them by subtracting their numerators.
-\frac{29}{6}x=-\frac{79}{6}
Subtract 49 from -30 to get -79.
x=-\frac{79}{6}\left(-\frac{6}{29}\right)
Multiply both sides by -\frac{6}{29}, the reciprocal of -\frac{29}{6}.
x=\frac{-79\left(-6\right)}{6\times 29}
Multiply -\frac{79}{6} times -\frac{6}{29} by multiplying numerator times numerator and denominator times denominator.
x=\frac{474}{174}
Do the multiplications in the fraction \frac{-79\left(-6\right)}{6\times 29}.
x=\frac{79}{29}
Reduce the fraction \frac{474}{174} to lowest terms by extracting and canceling out 6.