Solve for x
x\leq -\frac{10}{3}
Graph
Share
Copied to clipboard
20\left(\frac{1}{2}-\frac{3}{4}x\right)+30\left(2\times 2+1\right)\left(\frac{1}{5}x-\frac{1\times 5+1}{5}\right)\geq 10\left(2\times 6+1\right)x-20\left(1\times 3+1\right)\left(\frac{1}{2}x-1\right)
Multiply both sides of the equation by 60, the least common multiple of 3,2,4,5,6. Since 60 is positive, the inequality direction remains the same.
20\times \frac{1}{2}+20\left(-\frac{3}{4}\right)x+30\left(2\times 2+1\right)\left(\frac{1}{5}x-\frac{1\times 5+1}{5}\right)\geq 10\left(2\times 6+1\right)x-20\left(1\times 3+1\right)\left(\frac{1}{2}x-1\right)
Use the distributive property to multiply 20 by \frac{1}{2}-\frac{3}{4}x.
\frac{20}{2}+20\left(-\frac{3}{4}\right)x+30\left(2\times 2+1\right)\left(\frac{1}{5}x-\frac{1\times 5+1}{5}\right)\geq 10\left(2\times 6+1\right)x-20\left(1\times 3+1\right)\left(\frac{1}{2}x-1\right)
Multiply 20 and \frac{1}{2} to get \frac{20}{2}.
10+20\left(-\frac{3}{4}\right)x+30\left(2\times 2+1\right)\left(\frac{1}{5}x-\frac{1\times 5+1}{5}\right)\geq 10\left(2\times 6+1\right)x-20\left(1\times 3+1\right)\left(\frac{1}{2}x-1\right)
Divide 20 by 2 to get 10.
10+\frac{20\left(-3\right)}{4}x+30\left(2\times 2+1\right)\left(\frac{1}{5}x-\frac{1\times 5+1}{5}\right)\geq 10\left(2\times 6+1\right)x-20\left(1\times 3+1\right)\left(\frac{1}{2}x-1\right)
Express 20\left(-\frac{3}{4}\right) as a single fraction.
10+\frac{-60}{4}x+30\left(2\times 2+1\right)\left(\frac{1}{5}x-\frac{1\times 5+1}{5}\right)\geq 10\left(2\times 6+1\right)x-20\left(1\times 3+1\right)\left(\frac{1}{2}x-1\right)
Multiply 20 and -3 to get -60.
10-15x+30\left(2\times 2+1\right)\left(\frac{1}{5}x-\frac{1\times 5+1}{5}\right)\geq 10\left(2\times 6+1\right)x-20\left(1\times 3+1\right)\left(\frac{1}{2}x-1\right)
Divide -60 by 4 to get -15.
10-15x+30\left(4+1\right)\left(\frac{1}{5}x-\frac{1\times 5+1}{5}\right)\geq 10\left(2\times 6+1\right)x-20\left(1\times 3+1\right)\left(\frac{1}{2}x-1\right)
Multiply 2 and 2 to get 4.
10-15x+30\times 5\left(\frac{1}{5}x-\frac{1\times 5+1}{5}\right)\geq 10\left(2\times 6+1\right)x-20\left(1\times 3+1\right)\left(\frac{1}{2}x-1\right)
Add 4 and 1 to get 5.
10-15x+150\left(\frac{1}{5}x-\frac{1\times 5+1}{5}\right)\geq 10\left(2\times 6+1\right)x-20\left(1\times 3+1\right)\left(\frac{1}{2}x-1\right)
Multiply 30 and 5 to get 150.
10-15x+150\left(\frac{1}{5}x-\frac{5+1}{5}\right)\geq 10\left(2\times 6+1\right)x-20\left(1\times 3+1\right)\left(\frac{1}{2}x-1\right)
Multiply 1 and 5 to get 5.
10-15x+150\left(\frac{1}{5}x-\frac{6}{5}\right)\geq 10\left(2\times 6+1\right)x-20\left(1\times 3+1\right)\left(\frac{1}{2}x-1\right)
Add 5 and 1 to get 6.
10-15x+150\times \frac{1}{5}x+150\left(-\frac{6}{5}\right)\geq 10\left(2\times 6+1\right)x-20\left(1\times 3+1\right)\left(\frac{1}{2}x-1\right)
Use the distributive property to multiply 150 by \frac{1}{5}x-\frac{6}{5}.
10-15x+\frac{150}{5}x+150\left(-\frac{6}{5}\right)\geq 10\left(2\times 6+1\right)x-20\left(1\times 3+1\right)\left(\frac{1}{2}x-1\right)
Multiply 150 and \frac{1}{5} to get \frac{150}{5}.
10-15x+30x+150\left(-\frac{6}{5}\right)\geq 10\left(2\times 6+1\right)x-20\left(1\times 3+1\right)\left(\frac{1}{2}x-1\right)
Divide 150 by 5 to get 30.
10-15x+30x+\frac{150\left(-6\right)}{5}\geq 10\left(2\times 6+1\right)x-20\left(1\times 3+1\right)\left(\frac{1}{2}x-1\right)
Express 150\left(-\frac{6}{5}\right) as a single fraction.
10-15x+30x+\frac{-900}{5}\geq 10\left(2\times 6+1\right)x-20\left(1\times 3+1\right)\left(\frac{1}{2}x-1\right)
Multiply 150 and -6 to get -900.
10-15x+30x-180\geq 10\left(2\times 6+1\right)x-20\left(1\times 3+1\right)\left(\frac{1}{2}x-1\right)
Divide -900 by 5 to get -180.
10+15x-180\geq 10\left(2\times 6+1\right)x-20\left(1\times 3+1\right)\left(\frac{1}{2}x-1\right)
Combine -15x and 30x to get 15x.
-170+15x\geq 10\left(2\times 6+1\right)x-20\left(1\times 3+1\right)\left(\frac{1}{2}x-1\right)
Subtract 180 from 10 to get -170.
-170+15x\geq 10\left(12+1\right)x-20\left(1\times 3+1\right)\left(\frac{1}{2}x-1\right)
Multiply 2 and 6 to get 12.
-170+15x\geq 10\times 13x-20\left(1\times 3+1\right)\left(\frac{1}{2}x-1\right)
Add 12 and 1 to get 13.
-170+15x\geq 130x-20\left(1\times 3+1\right)\left(\frac{1}{2}x-1\right)
Multiply 10 and 13 to get 130.
-170+15x\geq 130x-20\left(3+1\right)\left(\frac{1}{2}x-1\right)
Multiply 1 and 3 to get 3.
-170+15x\geq 130x-20\times 4\left(\frac{1}{2}x-1\right)
Add 3 and 1 to get 4.
-170+15x\geq 130x-80\left(\frac{1}{2}x-1\right)
Multiply 20 and 4 to get 80.
-170+15x\geq 130x-80\times \frac{1}{2}x+80
Use the distributive property to multiply -80 by \frac{1}{2}x-1.
-170+15x\geq 130x+\frac{-80}{2}x+80
Multiply -80 and \frac{1}{2} to get \frac{-80}{2}.
-170+15x\geq 130x-40x+80
Divide -80 by 2 to get -40.
-170+15x\geq 90x+80
Combine 130x and -40x to get 90x.
-170+15x-90x\geq 80
Subtract 90x from both sides.
-170-75x\geq 80
Combine 15x and -90x to get -75x.
-75x\geq 80+170
Add 170 to both sides.
-75x\geq 250
Add 80 and 170 to get 250.
x\leq \frac{250}{-75}
Divide both sides by -75. Since -75 is negative, the inequality direction is changed.
x\leq -\frac{10}{3}
Reduce the fraction \frac{250}{-75} to lowest terms by extracting and canceling out 25.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}