Evaluate
\frac{120}{19}\approx 6.315789474
Factor
\frac{2 ^ {3} \cdot 3 \cdot 5}{19} = 6\frac{6}{19} = 6.315789473684211
Share
Copied to clipboard
\frac{\frac{1}{3}}{\frac{3}{180}+\frac{2}{180}+\frac{1}{40}}
Least common multiple of 60 and 90 is 180. Convert \frac{1}{60} and \frac{1}{90} to fractions with denominator 180.
\frac{\frac{1}{3}}{\frac{3+2}{180}+\frac{1}{40}}
Since \frac{3}{180} and \frac{2}{180} have the same denominator, add them by adding their numerators.
\frac{\frac{1}{3}}{\frac{5}{180}+\frac{1}{40}}
Add 3 and 2 to get 5.
\frac{\frac{1}{3}}{\frac{1}{36}+\frac{1}{40}}
Reduce the fraction \frac{5}{180} to lowest terms by extracting and canceling out 5.
\frac{\frac{1}{3}}{\frac{10}{360}+\frac{9}{360}}
Least common multiple of 36 and 40 is 360. Convert \frac{1}{36} and \frac{1}{40} to fractions with denominator 360.
\frac{\frac{1}{3}}{\frac{10+9}{360}}
Since \frac{10}{360} and \frac{9}{360} have the same denominator, add them by adding their numerators.
\frac{\frac{1}{3}}{\frac{19}{360}}
Add 10 and 9 to get 19.
\frac{1}{3}\times \frac{360}{19}
Divide \frac{1}{3} by \frac{19}{360} by multiplying \frac{1}{3} by the reciprocal of \frac{19}{360}.
\frac{1\times 360}{3\times 19}
Multiply \frac{1}{3} times \frac{360}{19} by multiplying numerator times numerator and denominator times denominator.
\frac{360}{57}
Do the multiplications in the fraction \frac{1\times 360}{3\times 19}.
\frac{120}{19}
Reduce the fraction \frac{360}{57} to lowest terms by extracting and canceling out 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}