Skip to main content
Verify
false
Tick mark Image

Similar Problems from Web Search

Share

\frac{1}{3}<\frac{5\left(-1\right)}{4\times 5}\text{ and }\frac{5}{4}\left(-\frac{1}{5}\right)>\frac{3}{9}
Multiply \frac{5}{4} times -\frac{1}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{3}<\frac{-1}{4}\text{ and }\frac{5}{4}\left(-\frac{1}{5}\right)>\frac{3}{9}
Cancel out 5 in both numerator and denominator.
\frac{1}{3}<-\frac{1}{4}\text{ and }\frac{5}{4}\left(-\frac{1}{5}\right)>\frac{3}{9}
Fraction \frac{-1}{4} can be rewritten as -\frac{1}{4} by extracting the negative sign.
\frac{4}{12}<-\frac{3}{12}\text{ and }\frac{5}{4}\left(-\frac{1}{5}\right)>\frac{3}{9}
Least common multiple of 3 and 4 is 12. Convert \frac{1}{3} and -\frac{1}{4} to fractions with denominator 12.
\text{false}\text{ and }\frac{5}{4}\left(-\frac{1}{5}\right)>\frac{3}{9}
Compare \frac{4}{12} and -\frac{3}{12}.
\text{false}\text{ and }\frac{5\left(-1\right)}{4\times 5}>\frac{3}{9}
Multiply \frac{5}{4} times -\frac{1}{5} by multiplying numerator times numerator and denominator times denominator.
\text{false}\text{ and }\frac{-1}{4}>\frac{3}{9}
Cancel out 5 in both numerator and denominator.
\text{false}\text{ and }-\frac{1}{4}>\frac{3}{9}
Fraction \frac{-1}{4} can be rewritten as -\frac{1}{4} by extracting the negative sign.
\text{false}\text{ and }-\frac{1}{4}>\frac{1}{3}
Reduce the fraction \frac{3}{9} to lowest terms by extracting and canceling out 3.
\text{false}\text{ and }-\frac{3}{12}>\frac{4}{12}
Least common multiple of 4 and 3 is 12. Convert -\frac{1}{4} and \frac{1}{3} to fractions with denominator 12.
\text{false}\text{ and }\text{false}
Compare -\frac{3}{12} and \frac{4}{12}.
\text{false}
The conjunction of \text{false} and \text{false} is \text{false}.