Verify
false
Share
Copied to clipboard
\frac{1}{3}<\frac{5\left(-1\right)}{4\times 5}\text{ and }\frac{5}{4}\left(-\frac{1}{5}\right)>\frac{3}{9}
Multiply \frac{5}{4} times -\frac{1}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{3}<\frac{-1}{4}\text{ and }\frac{5}{4}\left(-\frac{1}{5}\right)>\frac{3}{9}
Cancel out 5 in both numerator and denominator.
\frac{1}{3}<-\frac{1}{4}\text{ and }\frac{5}{4}\left(-\frac{1}{5}\right)>\frac{3}{9}
Fraction \frac{-1}{4} can be rewritten as -\frac{1}{4} by extracting the negative sign.
\frac{4}{12}<-\frac{3}{12}\text{ and }\frac{5}{4}\left(-\frac{1}{5}\right)>\frac{3}{9}
Least common multiple of 3 and 4 is 12. Convert \frac{1}{3} and -\frac{1}{4} to fractions with denominator 12.
\text{false}\text{ and }\frac{5}{4}\left(-\frac{1}{5}\right)>\frac{3}{9}
Compare \frac{4}{12} and -\frac{3}{12}.
\text{false}\text{ and }\frac{5\left(-1\right)}{4\times 5}>\frac{3}{9}
Multiply \frac{5}{4} times -\frac{1}{5} by multiplying numerator times numerator and denominator times denominator.
\text{false}\text{ and }\frac{-1}{4}>\frac{3}{9}
Cancel out 5 in both numerator and denominator.
\text{false}\text{ and }-\frac{1}{4}>\frac{3}{9}
Fraction \frac{-1}{4} can be rewritten as -\frac{1}{4} by extracting the negative sign.
\text{false}\text{ and }-\frac{1}{4}>\frac{1}{3}
Reduce the fraction \frac{3}{9} to lowest terms by extracting and canceling out 3.
\text{false}\text{ and }-\frac{3}{12}>\frac{4}{12}
Least common multiple of 4 and 3 is 12. Convert -\frac{1}{4} and \frac{1}{3} to fractions with denominator 12.
\text{false}\text{ and }\text{false}
Compare -\frac{3}{12} and \frac{4}{12}.
\text{false}
The conjunction of \text{false} and \text{false} is \text{false}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}