Solve for f
f=-\frac{6}{1-3x}
x\neq \frac{1}{3}
Solve for x
x=\frac{1}{3}+\frac{2}{f}
f\neq 0
Graph
Share
Copied to clipboard
3f\times \frac{1}{3}+3\times 2=x\times 3f
Variable f cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 3f, the least common multiple of 3,f.
f+3\times 2=x\times 3f
Multiply 3 and \frac{1}{3} to get 1.
f+6=x\times 3f
Multiply 3 and 2 to get 6.
f+6-x\times 3f=0
Subtract x\times 3f from both sides.
f+6-3xf=0
Multiply -1 and 3 to get -3.
f-3xf=-6
Subtract 6 from both sides. Anything subtracted from zero gives its negation.
\left(1-3x\right)f=-6
Combine all terms containing f.
\frac{\left(1-3x\right)f}{1-3x}=-\frac{6}{1-3x}
Divide both sides by -3x+1.
f=-\frac{6}{1-3x}
Dividing by -3x+1 undoes the multiplication by -3x+1.
f=-\frac{6}{1-3x}\text{, }f\neq 0
Variable f cannot be equal to 0.
3f\times \frac{1}{3}+3\times 2=x\times 3f
Multiply both sides of the equation by 3f, the least common multiple of 3,f.
f+3\times 2=x\times 3f
Multiply 3 and \frac{1}{3} to get 1.
f+6=x\times 3f
Multiply 3 and 2 to get 6.
x\times 3f=f+6
Swap sides so that all variable terms are on the left hand side.
3fx=f+6
The equation is in standard form.
\frac{3fx}{3f}=\frac{f+6}{3f}
Divide both sides by 3f.
x=\frac{f+6}{3f}
Dividing by 3f undoes the multiplication by 3f.
x=\frac{1}{3}+\frac{2}{f}
Divide 6+f by 3f.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}