Evaluate
\frac{9}{11}\approx 0.818181818
Factor
\frac{3 ^ {2}}{11} = 0.8181818181818182
Share
Copied to clipboard
\frac{2}{6}+\frac{1}{6}+\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+\frac{1}{28}+\frac{1}{36}+\frac{1}{45}+\frac{1}{55}
Least common multiple of 3 and 6 is 6. Convert \frac{1}{3} and \frac{1}{6} to fractions with denominator 6.
\frac{2+1}{6}+\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+\frac{1}{28}+\frac{1}{36}+\frac{1}{45}+\frac{1}{55}
Since \frac{2}{6} and \frac{1}{6} have the same denominator, add them by adding their numerators.
\frac{3}{6}+\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+\frac{1}{28}+\frac{1}{36}+\frac{1}{45}+\frac{1}{55}
Add 2 and 1 to get 3.
\frac{1}{2}+\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+\frac{1}{28}+\frac{1}{36}+\frac{1}{45}+\frac{1}{55}
Reduce the fraction \frac{3}{6} to lowest terms by extracting and canceling out 3.
\frac{5}{10}+\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+\frac{1}{28}+\frac{1}{36}+\frac{1}{45}+\frac{1}{55}
Least common multiple of 2 and 10 is 10. Convert \frac{1}{2} and \frac{1}{10} to fractions with denominator 10.
\frac{5+1}{10}+\frac{1}{15}+\frac{1}{21}+\frac{1}{28}+\frac{1}{36}+\frac{1}{45}+\frac{1}{55}
Since \frac{5}{10} and \frac{1}{10} have the same denominator, add them by adding their numerators.
\frac{6}{10}+\frac{1}{15}+\frac{1}{21}+\frac{1}{28}+\frac{1}{36}+\frac{1}{45}+\frac{1}{55}
Add 5 and 1 to get 6.
\frac{3}{5}+\frac{1}{15}+\frac{1}{21}+\frac{1}{28}+\frac{1}{36}+\frac{1}{45}+\frac{1}{55}
Reduce the fraction \frac{6}{10} to lowest terms by extracting and canceling out 2.
\frac{9}{15}+\frac{1}{15}+\frac{1}{21}+\frac{1}{28}+\frac{1}{36}+\frac{1}{45}+\frac{1}{55}
Least common multiple of 5 and 15 is 15. Convert \frac{3}{5} and \frac{1}{15} to fractions with denominator 15.
\frac{9+1}{15}+\frac{1}{21}+\frac{1}{28}+\frac{1}{36}+\frac{1}{45}+\frac{1}{55}
Since \frac{9}{15} and \frac{1}{15} have the same denominator, add them by adding their numerators.
\frac{10}{15}+\frac{1}{21}+\frac{1}{28}+\frac{1}{36}+\frac{1}{45}+\frac{1}{55}
Add 9 and 1 to get 10.
\frac{2}{3}+\frac{1}{21}+\frac{1}{28}+\frac{1}{36}+\frac{1}{45}+\frac{1}{55}
Reduce the fraction \frac{10}{15} to lowest terms by extracting and canceling out 5.
\frac{14}{21}+\frac{1}{21}+\frac{1}{28}+\frac{1}{36}+\frac{1}{45}+\frac{1}{55}
Least common multiple of 3 and 21 is 21. Convert \frac{2}{3} and \frac{1}{21} to fractions with denominator 21.
\frac{14+1}{21}+\frac{1}{28}+\frac{1}{36}+\frac{1}{45}+\frac{1}{55}
Since \frac{14}{21} and \frac{1}{21} have the same denominator, add them by adding their numerators.
\frac{15}{21}+\frac{1}{28}+\frac{1}{36}+\frac{1}{45}+\frac{1}{55}
Add 14 and 1 to get 15.
\frac{5}{7}+\frac{1}{28}+\frac{1}{36}+\frac{1}{45}+\frac{1}{55}
Reduce the fraction \frac{15}{21} to lowest terms by extracting and canceling out 3.
\frac{20}{28}+\frac{1}{28}+\frac{1}{36}+\frac{1}{45}+\frac{1}{55}
Least common multiple of 7 and 28 is 28. Convert \frac{5}{7} and \frac{1}{28} to fractions with denominator 28.
\frac{20+1}{28}+\frac{1}{36}+\frac{1}{45}+\frac{1}{55}
Since \frac{20}{28} and \frac{1}{28} have the same denominator, add them by adding their numerators.
\frac{21}{28}+\frac{1}{36}+\frac{1}{45}+\frac{1}{55}
Add 20 and 1 to get 21.
\frac{3}{4}+\frac{1}{36}+\frac{1}{45}+\frac{1}{55}
Reduce the fraction \frac{21}{28} to lowest terms by extracting and canceling out 7.
\frac{27}{36}+\frac{1}{36}+\frac{1}{45}+\frac{1}{55}
Least common multiple of 4 and 36 is 36. Convert \frac{3}{4} and \frac{1}{36} to fractions with denominator 36.
\frac{27+1}{36}+\frac{1}{45}+\frac{1}{55}
Since \frac{27}{36} and \frac{1}{36} have the same denominator, add them by adding their numerators.
\frac{28}{36}+\frac{1}{45}+\frac{1}{55}
Add 27 and 1 to get 28.
\frac{7}{9}+\frac{1}{45}+\frac{1}{55}
Reduce the fraction \frac{28}{36} to lowest terms by extracting and canceling out 4.
\frac{35}{45}+\frac{1}{45}+\frac{1}{55}
Least common multiple of 9 and 45 is 45. Convert \frac{7}{9} and \frac{1}{45} to fractions with denominator 45.
\frac{35+1}{45}+\frac{1}{55}
Since \frac{35}{45} and \frac{1}{45} have the same denominator, add them by adding their numerators.
\frac{36}{45}+\frac{1}{55}
Add 35 and 1 to get 36.
\frac{4}{5}+\frac{1}{55}
Reduce the fraction \frac{36}{45} to lowest terms by extracting and canceling out 9.
\frac{44}{55}+\frac{1}{55}
Least common multiple of 5 and 55 is 55. Convert \frac{4}{5} and \frac{1}{55} to fractions with denominator 55.
\frac{44+1}{55}
Since \frac{44}{55} and \frac{1}{55} have the same denominator, add them by adding their numerators.
\frac{45}{55}
Add 44 and 1 to get 45.
\frac{9}{11}
Reduce the fraction \frac{45}{55} to lowest terms by extracting and canceling out 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}