Evaluate
\frac{61\sqrt{2}}{12}\approx 7.188918942
Share
Copied to clipboard
\frac{\sqrt{2}}{3\left(\sqrt{2}\right)^{2}}-2\sqrt{2}+7\sqrt{2}-\frac{1}{6\sqrt{2}}
Rationalize the denominator of \frac{1}{3\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\frac{\sqrt{2}}{3\times 2}-2\sqrt{2}+7\sqrt{2}-\frac{1}{6\sqrt{2}}
The square of \sqrt{2} is 2.
\frac{\sqrt{2}}{6}-2\sqrt{2}+7\sqrt{2}-\frac{1}{6\sqrt{2}}
Multiply 3 and 2 to get 6.
-\frac{11}{6}\sqrt{2}+7\sqrt{2}-\frac{1}{6\sqrt{2}}
Combine \frac{\sqrt{2}}{6} and -2\sqrt{2} to get -\frac{11}{6}\sqrt{2}.
\frac{31}{6}\sqrt{2}-\frac{1}{6\sqrt{2}}
Combine -\frac{11}{6}\sqrt{2} and 7\sqrt{2} to get \frac{31}{6}\sqrt{2}.
\frac{31}{6}\sqrt{2}-\frac{\sqrt{2}}{6\left(\sqrt{2}\right)^{2}}
Rationalize the denominator of \frac{1}{6\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\frac{31}{6}\sqrt{2}-\frac{\sqrt{2}}{6\times 2}
The square of \sqrt{2} is 2.
\frac{31}{6}\sqrt{2}-\frac{\sqrt{2}}{12}
Multiply 6 and 2 to get 12.
\frac{61}{12}\sqrt{2}
Combine \frac{31}{6}\sqrt{2} and -\frac{\sqrt{2}}{12} to get \frac{61}{12}\sqrt{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}