Verify
false
Share
Copied to clipboard
\frac{4}{80}+\frac{1}{80}=2
Least common multiple of 20 and 80 is 80. Convert \frac{1}{20} and \frac{1}{80} to fractions with denominator 80.
\frac{4+1}{80}=2
Since \frac{4}{80} and \frac{1}{80} have the same denominator, add them by adding their numerators.
\frac{5}{80}=2
Add 4 and 1 to get 5.
\frac{1}{16}=2
Reduce the fraction \frac{5}{80} to lowest terms by extracting and canceling out 5.
\frac{1}{16}=\frac{32}{16}
Convert 2 to fraction \frac{32}{16}.
\text{false}
Compare \frac{1}{16} and \frac{32}{16}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}