Solve for x
x = \frac{3 \sqrt{201} + 41}{8} \approx 10.44154258
x=\frac{41-3\sqrt{201}}{8}\approx -0.19154258
Graph
Share
Copied to clipboard
5x-30+5\left(x-6\right)\left(2x-1\right)\times \frac{2}{5}=\left(10x-5\right)\times 2
Variable x cannot be equal to any of the values \frac{1}{2},6 since division by zero is not defined. Multiply both sides of the equation by 5\left(x-6\right)\left(2x-1\right), the least common multiple of 2x-1,5,x-6.
5x-30+2\left(x-6\right)\left(2x-1\right)=\left(10x-5\right)\times 2
Multiply 5 and \frac{2}{5} to get 2.
5x-30+\left(2x-12\right)\left(2x-1\right)=\left(10x-5\right)\times 2
Use the distributive property to multiply 2 by x-6.
5x-30+4x^{2}-26x+12=\left(10x-5\right)\times 2
Use the distributive property to multiply 2x-12 by 2x-1 and combine like terms.
-21x-30+4x^{2}+12=\left(10x-5\right)\times 2
Combine 5x and -26x to get -21x.
-21x-18+4x^{2}=\left(10x-5\right)\times 2
Add -30 and 12 to get -18.
-21x-18+4x^{2}=20x-10
Use the distributive property to multiply 10x-5 by 2.
-21x-18+4x^{2}-20x=-10
Subtract 20x from both sides.
-41x-18+4x^{2}=-10
Combine -21x and -20x to get -41x.
-41x-18+4x^{2}+10=0
Add 10 to both sides.
-41x-8+4x^{2}=0
Add -18 and 10 to get -8.
4x^{2}-41x-8=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-41\right)±\sqrt{\left(-41\right)^{2}-4\times 4\left(-8\right)}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, -41 for b, and -8 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-41\right)±\sqrt{1681-4\times 4\left(-8\right)}}{2\times 4}
Square -41.
x=\frac{-\left(-41\right)±\sqrt{1681-16\left(-8\right)}}{2\times 4}
Multiply -4 times 4.
x=\frac{-\left(-41\right)±\sqrt{1681+128}}{2\times 4}
Multiply -16 times -8.
x=\frac{-\left(-41\right)±\sqrt{1809}}{2\times 4}
Add 1681 to 128.
x=\frac{-\left(-41\right)±3\sqrt{201}}{2\times 4}
Take the square root of 1809.
x=\frac{41±3\sqrt{201}}{2\times 4}
The opposite of -41 is 41.
x=\frac{41±3\sqrt{201}}{8}
Multiply 2 times 4.
x=\frac{3\sqrt{201}+41}{8}
Now solve the equation x=\frac{41±3\sqrt{201}}{8} when ± is plus. Add 41 to 3\sqrt{201}.
x=\frac{41-3\sqrt{201}}{8}
Now solve the equation x=\frac{41±3\sqrt{201}}{8} when ± is minus. Subtract 3\sqrt{201} from 41.
x=\frac{3\sqrt{201}+41}{8} x=\frac{41-3\sqrt{201}}{8}
The equation is now solved.
5x-30+5\left(x-6\right)\left(2x-1\right)\times \frac{2}{5}=\left(10x-5\right)\times 2
Variable x cannot be equal to any of the values \frac{1}{2},6 since division by zero is not defined. Multiply both sides of the equation by 5\left(x-6\right)\left(2x-1\right), the least common multiple of 2x-1,5,x-6.
5x-30+2\left(x-6\right)\left(2x-1\right)=\left(10x-5\right)\times 2
Multiply 5 and \frac{2}{5} to get 2.
5x-30+\left(2x-12\right)\left(2x-1\right)=\left(10x-5\right)\times 2
Use the distributive property to multiply 2 by x-6.
5x-30+4x^{2}-26x+12=\left(10x-5\right)\times 2
Use the distributive property to multiply 2x-12 by 2x-1 and combine like terms.
-21x-30+4x^{2}+12=\left(10x-5\right)\times 2
Combine 5x and -26x to get -21x.
-21x-18+4x^{2}=\left(10x-5\right)\times 2
Add -30 and 12 to get -18.
-21x-18+4x^{2}=20x-10
Use the distributive property to multiply 10x-5 by 2.
-21x-18+4x^{2}-20x=-10
Subtract 20x from both sides.
-41x-18+4x^{2}=-10
Combine -21x and -20x to get -41x.
-41x+4x^{2}=-10+18
Add 18 to both sides.
-41x+4x^{2}=8
Add -10 and 18 to get 8.
4x^{2}-41x=8
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{4x^{2}-41x}{4}=\frac{8}{4}
Divide both sides by 4.
x^{2}-\frac{41}{4}x=\frac{8}{4}
Dividing by 4 undoes the multiplication by 4.
x^{2}-\frac{41}{4}x=2
Divide 8 by 4.
x^{2}-\frac{41}{4}x+\left(-\frac{41}{8}\right)^{2}=2+\left(-\frac{41}{8}\right)^{2}
Divide -\frac{41}{4}, the coefficient of the x term, by 2 to get -\frac{41}{8}. Then add the square of -\frac{41}{8} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{41}{4}x+\frac{1681}{64}=2+\frac{1681}{64}
Square -\frac{41}{8} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{41}{4}x+\frac{1681}{64}=\frac{1809}{64}
Add 2 to \frac{1681}{64}.
\left(x-\frac{41}{8}\right)^{2}=\frac{1809}{64}
Factor x^{2}-\frac{41}{4}x+\frac{1681}{64}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{41}{8}\right)^{2}}=\sqrt{\frac{1809}{64}}
Take the square root of both sides of the equation.
x-\frac{41}{8}=\frac{3\sqrt{201}}{8} x-\frac{41}{8}=-\frac{3\sqrt{201}}{8}
Simplify.
x=\frac{3\sqrt{201}+41}{8} x=\frac{41-3\sqrt{201}}{8}
Add \frac{41}{8} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}