Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{1}{2x}-\frac{1}{x+y}\left(\frac{\left(x^{2}-y^{2}\right)\times 2x}{2x}+\frac{x+y}{2x}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply x^{2}-y^{2} times \frac{2x}{2x}.
\frac{1}{2x}-\frac{1}{x+y}\times \frac{\left(x^{2}-y^{2}\right)\times 2x+x+y}{2x}
Since \frac{\left(x^{2}-y^{2}\right)\times 2x}{2x} and \frac{x+y}{2x} have the same denominator, add them by adding their numerators.
\frac{1}{2x}-\frac{1}{x+y}\times \frac{2x^{3}-2y^{2}x+x+y}{2x}
Do the multiplications in \left(x^{2}-y^{2}\right)\times 2x+x+y.
\frac{1}{2x}-\frac{2x^{3}-2y^{2}x+x+y}{\left(x+y\right)\times 2x}
Multiply \frac{1}{x+y} times \frac{2x^{3}-2y^{2}x+x+y}{2x} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{2x}-\frac{\left(-x-y\right)\left(-2x^{2}+2xy-1\right)}{2x\left(x+y\right)}
Factor the expressions that are not already factored in \frac{2x^{3}-2y^{2}x+x+y}{\left(x+y\right)\times 2x}.
\frac{1}{2x}-\frac{-\left(x+y\right)\left(-2x^{2}+2xy-1\right)}{2x\left(x+y\right)}
Extract the negative sign in -x-y.
\frac{1}{2x}-\frac{-\left(-2x^{2}+2xy-1\right)}{2x}
Cancel out x+y in both numerator and denominator.
\frac{1-\left(-\left(-2x^{2}+2xy-1\right)\right)}{2x}
Since \frac{1}{2x} and \frac{-\left(-2x^{2}+2xy-1\right)}{2x} have the same denominator, subtract them by subtracting their numerators.
\frac{1-2x^{2}+2xy-1}{2x}
Do the multiplications in 1-\left(-\left(-2x^{2}+2xy-1\right)\right).
\frac{-2x^{2}+2xy}{2x}
Combine like terms in 1-2x^{2}+2xy-1.
\frac{2x\left(-x+y\right)}{2x}
Factor the expressions that are not already factored in \frac{-2x^{2}+2xy}{2x}.
-x+y
Cancel out 2x in both numerator and denominator.
\frac{1}{2x}-\frac{1}{x+y}\left(\frac{\left(x^{2}-y^{2}\right)\times 2x}{2x}+\frac{x+y}{2x}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply x^{2}-y^{2} times \frac{2x}{2x}.
\frac{1}{2x}-\frac{1}{x+y}\times \frac{\left(x^{2}-y^{2}\right)\times 2x+x+y}{2x}
Since \frac{\left(x^{2}-y^{2}\right)\times 2x}{2x} and \frac{x+y}{2x} have the same denominator, add them by adding their numerators.
\frac{1}{2x}-\frac{1}{x+y}\times \frac{2x^{3}-2y^{2}x+x+y}{2x}
Do the multiplications in \left(x^{2}-y^{2}\right)\times 2x+x+y.
\frac{1}{2x}-\frac{2x^{3}-2y^{2}x+x+y}{\left(x+y\right)\times 2x}
Multiply \frac{1}{x+y} times \frac{2x^{3}-2y^{2}x+x+y}{2x} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{2x}-\frac{\left(-x-y\right)\left(-2x^{2}+2xy-1\right)}{2x\left(x+y\right)}
Factor the expressions that are not already factored in \frac{2x^{3}-2y^{2}x+x+y}{\left(x+y\right)\times 2x}.
\frac{1}{2x}-\frac{-\left(x+y\right)\left(-2x^{2}+2xy-1\right)}{2x\left(x+y\right)}
Extract the negative sign in -x-y.
\frac{1}{2x}-\frac{-\left(-2x^{2}+2xy-1\right)}{2x}
Cancel out x+y in both numerator and denominator.
\frac{1-\left(-\left(-2x^{2}+2xy-1\right)\right)}{2x}
Since \frac{1}{2x} and \frac{-\left(-2x^{2}+2xy-1\right)}{2x} have the same denominator, subtract them by subtracting their numerators.
\frac{1-2x^{2}+2xy-1}{2x}
Do the multiplications in 1-\left(-\left(-2x^{2}+2xy-1\right)\right).
\frac{-2x^{2}+2xy}{2x}
Combine like terms in 1-2x^{2}+2xy-1.
\frac{2x\left(-x+y\right)}{2x}
Factor the expressions that are not already factored in \frac{-2x^{2}+2xy}{2x}.
-x+y
Cancel out 2x in both numerator and denominator.