Solve for x
x=\frac{6^{\frac{2}{3}}\sqrt[3]{6-\sqrt{30}}}{6}\approx 0.44332378
x = \frac{6 ^ {\frac{2}{3}} \sqrt[3]{\sqrt{30} + 6}}{6} \approx 1.241352783
Graph
Share
Copied to clipboard
1=2x^{3}\times 6-3x^{3}\times 2x^{3}
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 2x^{3}.
1=2x^{3}\times 6-3x^{6}\times 2
To multiply powers of the same base, add their exponents. Add 3 and 3 to get 6.
1=12x^{3}-3x^{6}\times 2
Multiply 2 and 6 to get 12.
1=12x^{3}-6x^{6}
Multiply -3 and 2 to get -6.
12x^{3}-6x^{6}=1
Swap sides so that all variable terms are on the left hand side.
12x^{3}-6x^{6}-1=0
Subtract 1 from both sides.
-6t^{2}+12t-1=0
Substitute t for x^{3}.
t=\frac{-12±\sqrt{12^{2}-4\left(-6\right)\left(-1\right)}}{-6\times 2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute -6 for a, 12 for b, and -1 for c in the quadratic formula.
t=\frac{-12±2\sqrt{30}}{-12}
Do the calculations.
t=-\frac{\sqrt{30}}{6}+1 t=\frac{\sqrt{30}}{6}+1
Solve the equation t=\frac{-12±2\sqrt{30}}{-12} when ± is plus and when ± is minus.
x=\sqrt[3]{-\frac{\sqrt{30}}{6}+1} x=\sqrt[3]{\frac{\sqrt{30}}{6}+1}
Since x=t^{3}, the solutions are obtained by evaluating x=\sqrt[3]{t} for each t.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}