Skip to main content
Solve for t
Tick mark Image
Solve for z
Tick mark Image

Similar Problems from Web Search

Share

z+2+\left(z+2\right)\left(2t+1\right)\times \frac{1}{27-i}=\left(2t+1\right)\times 4
Variable t cannot be equal to -\frac{1}{2} since division by zero is not defined. Multiply both sides of the equation by \left(z+2\right)\left(2t+1\right), the least common multiple of 2t+1,z+2.
z+2+\left(z+2\right)\left(2t+1\right)\times \frac{1\left(27+i\right)}{\left(27-i\right)\left(27+i\right)}=\left(2t+1\right)\times 4
Multiply both numerator and denominator of \frac{1}{27-i} by the complex conjugate of the denominator, 27+i.
z+2+\left(z+2\right)\left(2t+1\right)\times \frac{27+i}{730}=\left(2t+1\right)\times 4
Do the multiplications in \frac{1\left(27+i\right)}{\left(27-i\right)\left(27+i\right)}.
z+2+\left(z+2\right)\left(2t+1\right)\left(\frac{27}{730}+\frac{1}{730}i\right)=\left(2t+1\right)\times 4
Divide 27+i by 730 to get \frac{27}{730}+\frac{1}{730}i.
z+2+\left(2zt+z+4t+2\right)\left(\frac{27}{730}+\frac{1}{730}i\right)=\left(2t+1\right)\times 4
Use the distributive property to multiply z+2 by 2t+1.
z+2+\left(\frac{27}{365}+\frac{1}{365}i\right)zt+\left(\frac{27}{730}+\frac{1}{730}i\right)z+\left(\frac{54}{365}+\frac{2}{365}i\right)t+\left(\frac{27}{365}+\frac{1}{365}i\right)=\left(2t+1\right)\times 4
Use the distributive property to multiply 2zt+z+4t+2 by \frac{27}{730}+\frac{1}{730}i.
z+\left(\frac{27}{365}+\frac{1}{365}i\right)zt+\left(\frac{27}{730}+\frac{1}{730}i\right)z+\left(\frac{54}{365}+\frac{2}{365}i\right)t+\frac{757}{365}+\frac{1}{365}i=\left(2t+1\right)\times 4
Do the additions in 2+\left(\frac{27}{365}+\frac{1}{365}i\right).
\left(\frac{757}{730}+\frac{1}{730}i\right)z+\left(\frac{27}{365}+\frac{1}{365}i\right)zt+\left(\frac{54}{365}+\frac{2}{365}i\right)t+\frac{757}{365}+\frac{1}{365}i=\left(2t+1\right)\times 4
Combine z and \left(\frac{27}{730}+\frac{1}{730}i\right)z to get \left(\frac{757}{730}+\frac{1}{730}i\right)z.
\left(\frac{757}{730}+\frac{1}{730}i\right)z+\left(\frac{27}{365}+\frac{1}{365}i\right)zt+\left(\frac{54}{365}+\frac{2}{365}i\right)t+\frac{757}{365}+\frac{1}{365}i=8t+4
Use the distributive property to multiply 2t+1 by 4.
\left(\frac{757}{730}+\frac{1}{730}i\right)z+\left(\frac{27}{365}+\frac{1}{365}i\right)zt+\left(\frac{54}{365}+\frac{2}{365}i\right)t+\frac{757}{365}+\frac{1}{365}i-8t=4
Subtract 8t from both sides.
\left(\frac{757}{730}+\frac{1}{730}i\right)z+\left(\frac{27}{365}+\frac{1}{365}i\right)zt+\left(-\frac{2866}{365}+\frac{2}{365}i\right)t+\frac{757}{365}+\frac{1}{365}i=4
Combine \left(\frac{54}{365}+\frac{2}{365}i\right)t and -8t to get \left(-\frac{2866}{365}+\frac{2}{365}i\right)t.
\left(\frac{27}{365}+\frac{1}{365}i\right)zt+\left(-\frac{2866}{365}+\frac{2}{365}i\right)t+\frac{757}{365}+\frac{1}{365}i=4-\left(\frac{757}{730}+\frac{1}{730}i\right)z
Subtract \left(\frac{757}{730}+\frac{1}{730}i\right)z from both sides.
\left(\frac{27}{365}+\frac{1}{365}i\right)zt+\left(-\frac{2866}{365}+\frac{2}{365}i\right)t+\frac{1}{365}i=4-\left(\frac{757}{730}+\frac{1}{730}i\right)z-\frac{757}{365}
Subtract \frac{757}{365} from both sides.
\left(\frac{27}{365}+\frac{1}{365}i\right)zt+\left(-\frac{2866}{365}+\frac{2}{365}i\right)t=4-\left(\frac{757}{730}+\frac{1}{730}i\right)z-\frac{757}{365}-\frac{1}{365}i
Subtract \frac{1}{365}i from both sides.
\left(\frac{27}{365}+\frac{1}{365}i\right)zt+\left(-\frac{2866}{365}+\frac{2}{365}i\right)t=-\left(\frac{757}{730}+\frac{1}{730}i\right)z+\frac{703}{365}-\frac{1}{365}i
Do the additions in 4-\frac{757}{365}-\frac{1}{365}i.
\left(\frac{27}{365}+\frac{1}{365}i\right)zt+\left(-\frac{2866}{365}+\frac{2}{365}i\right)t=\left(-\frac{757}{730}-\frac{1}{730}i\right)z+\frac{703}{365}-\frac{1}{365}i
Multiply -1 and \frac{757}{730}+\frac{1}{730}i to get -\frac{757}{730}-\frac{1}{730}i.
\left(\left(\frac{27}{365}+\frac{1}{365}i\right)z+\left(-\frac{2866}{365}+\frac{2}{365}i\right)\right)t=\left(-\frac{757}{730}-\frac{1}{730}i\right)z+\frac{703}{365}-\frac{1}{365}i
Combine all terms containing t.
\left(\left(\frac{27}{365}+\frac{1}{365}i\right)z+\left(-\frac{2866}{365}+\frac{2}{365}i\right)\right)t=\left(-\frac{757}{730}-\frac{1}{730}i\right)z+\left(\frac{703}{365}-\frac{1}{365}i\right)
The equation is in standard form.
\frac{\left(\left(\frac{27}{365}+\frac{1}{365}i\right)z+\left(-\frac{2866}{365}+\frac{2}{365}i\right)\right)t}{\left(\frac{27}{365}+\frac{1}{365}i\right)z+\left(-\frac{2866}{365}+\frac{2}{365}i\right)}=\frac{\left(-\frac{757}{730}-\frac{1}{730}i\right)z+\left(\frac{703}{365}-\frac{1}{365}i\right)}{\left(\frac{27}{365}+\frac{1}{365}i\right)z+\left(-\frac{2866}{365}+\frac{2}{365}i\right)}
Divide both sides by \left(\frac{27}{365}+\frac{1}{365}i\right)z+\left(-\frac{2866}{365}+\frac{2}{365}i\right).
t=\frac{\left(-\frac{757}{730}-\frac{1}{730}i\right)z+\left(\frac{703}{365}-\frac{1}{365}i\right)}{\left(\frac{27}{365}+\frac{1}{365}i\right)z+\left(-\frac{2866}{365}+\frac{2}{365}i\right)}
Dividing by \left(\frac{27}{365}+\frac{1}{365}i\right)z+\left(-\frac{2866}{365}+\frac{2}{365}i\right) undoes the multiplication by \left(\frac{27}{365}+\frac{1}{365}i\right)z+\left(-\frac{2866}{365}+\frac{2}{365}i\right).
t=\frac{\left(-757-i\right)z+\left(1406-2i\right)}{2\left(\left(27+i\right)z+\left(-2866+2i\right)\right)}
Divide \left(-\frac{757}{730}-\frac{1}{730}i\right)z+\left(\frac{703}{365}-\frac{1}{365}i\right) by \left(\frac{27}{365}+\frac{1}{365}i\right)z+\left(-\frac{2866}{365}+\frac{2}{365}i\right).
t=\frac{\left(-757-i\right)z+\left(1406-2i\right)}{2\left(\left(27+i\right)z+\left(-2866+2i\right)\right)}\text{, }t\neq -\frac{1}{2}
Variable t cannot be equal to -\frac{1}{2}.
z+2+\left(z+2\right)\left(2t+1\right)\times \frac{1}{27-i}=\left(2t+1\right)\times 4
Variable z cannot be equal to -2 since division by zero is not defined. Multiply both sides of the equation by \left(z+2\right)\left(2t+1\right), the least common multiple of 2t+1,z+2.
z+2+\left(z+2\right)\left(2t+1\right)\times \frac{1\left(27+i\right)}{\left(27-i\right)\left(27+i\right)}=\left(2t+1\right)\times 4
Multiply both numerator and denominator of \frac{1}{27-i} by the complex conjugate of the denominator, 27+i.
z+2+\left(z+2\right)\left(2t+1\right)\times \frac{27+i}{730}=\left(2t+1\right)\times 4
Do the multiplications in \frac{1\left(27+i\right)}{\left(27-i\right)\left(27+i\right)}.
z+2+\left(z+2\right)\left(2t+1\right)\left(\frac{27}{730}+\frac{1}{730}i\right)=\left(2t+1\right)\times 4
Divide 27+i by 730 to get \frac{27}{730}+\frac{1}{730}i.
z+2+\left(2zt+z+4t+2\right)\left(\frac{27}{730}+\frac{1}{730}i\right)=\left(2t+1\right)\times 4
Use the distributive property to multiply z+2 by 2t+1.
z+2+\left(\frac{27}{365}+\frac{1}{365}i\right)zt+\left(\frac{27}{730}+\frac{1}{730}i\right)z+\left(\frac{54}{365}+\frac{2}{365}i\right)t+\left(\frac{27}{365}+\frac{1}{365}i\right)=\left(2t+1\right)\times 4
Use the distributive property to multiply 2zt+z+4t+2 by \frac{27}{730}+\frac{1}{730}i.
z+\left(\frac{27}{365}+\frac{1}{365}i\right)zt+\left(\frac{27}{730}+\frac{1}{730}i\right)z+\left(\frac{54}{365}+\frac{2}{365}i\right)t+\frac{757}{365}+\frac{1}{365}i=\left(2t+1\right)\times 4
Do the additions in 2+\left(\frac{27}{365}+\frac{1}{365}i\right).
\left(\frac{757}{730}+\frac{1}{730}i\right)z+\left(\frac{27}{365}+\frac{1}{365}i\right)zt+\left(\frac{54}{365}+\frac{2}{365}i\right)t+\frac{757}{365}+\frac{1}{365}i=\left(2t+1\right)\times 4
Combine z and \left(\frac{27}{730}+\frac{1}{730}i\right)z to get \left(\frac{757}{730}+\frac{1}{730}i\right)z.
\left(\frac{757}{730}+\frac{1}{730}i\right)z+\left(\frac{27}{365}+\frac{1}{365}i\right)zt+\left(\frac{54}{365}+\frac{2}{365}i\right)t+\frac{757}{365}+\frac{1}{365}i=8t+4
Use the distributive property to multiply 2t+1 by 4.
\left(\frac{757}{730}+\frac{1}{730}i\right)z+\left(\frac{27}{365}+\frac{1}{365}i\right)zt+\frac{757}{365}+\frac{1}{365}i=8t+4-\left(\frac{54}{365}+\frac{2}{365}i\right)t
Subtract \left(\frac{54}{365}+\frac{2}{365}i\right)t from both sides.
\left(\frac{757}{730}+\frac{1}{730}i\right)z+\left(\frac{27}{365}+\frac{1}{365}i\right)zt+\frac{757}{365}+\frac{1}{365}i=\left(\frac{2866}{365}-\frac{2}{365}i\right)t+4
Combine 8t and \left(-\frac{54}{365}-\frac{2}{365}i\right)t to get \left(\frac{2866}{365}-\frac{2}{365}i\right)t.
\left(\frac{757}{730}+\frac{1}{730}i\right)z+\left(\frac{27}{365}+\frac{1}{365}i\right)zt+\frac{1}{365}i=\left(\frac{2866}{365}-\frac{2}{365}i\right)t+4-\frac{757}{365}
Subtract \frac{757}{365} from both sides.
\left(\frac{757}{730}+\frac{1}{730}i\right)z+\left(\frac{27}{365}+\frac{1}{365}i\right)zt+\frac{1}{365}i=\left(\frac{2866}{365}-\frac{2}{365}i\right)t+\frac{703}{365}
Subtract \frac{757}{365} from 4 to get \frac{703}{365}.
\left(\frac{757}{730}+\frac{1}{730}i\right)z+\left(\frac{27}{365}+\frac{1}{365}i\right)zt=\left(\frac{2866}{365}-\frac{2}{365}i\right)t+\frac{703}{365}-\frac{1}{365}i
Subtract \frac{1}{365}i from both sides.
\left(\frac{757}{730}+\frac{1}{730}i+\left(\frac{27}{365}+\frac{1}{365}i\right)t\right)z=\left(\frac{2866}{365}-\frac{2}{365}i\right)t+\frac{703}{365}-\frac{1}{365}i
Combine all terms containing z.
\left(\left(\frac{27}{365}+\frac{1}{365}i\right)t+\left(\frac{757}{730}+\frac{1}{730}i\right)\right)z=\left(\frac{2866}{365}-\frac{2}{365}i\right)t+\left(\frac{703}{365}-\frac{1}{365}i\right)
The equation is in standard form.
\frac{\left(\left(\frac{27}{365}+\frac{1}{365}i\right)t+\left(\frac{757}{730}+\frac{1}{730}i\right)\right)z}{\left(\frac{27}{365}+\frac{1}{365}i\right)t+\left(\frac{757}{730}+\frac{1}{730}i\right)}=\frac{\left(\frac{2866}{365}-\frac{2}{365}i\right)t+\left(\frac{703}{365}-\frac{1}{365}i\right)}{\left(\frac{27}{365}+\frac{1}{365}i\right)t+\left(\frac{757}{730}+\frac{1}{730}i\right)}
Divide both sides by \frac{757}{730}+\frac{1}{730}i+\left(\frac{27}{365}+\frac{1}{365}i\right)t.
z=\frac{\left(\frac{2866}{365}-\frac{2}{365}i\right)t+\left(\frac{703}{365}-\frac{1}{365}i\right)}{\left(\frac{27}{365}+\frac{1}{365}i\right)t+\left(\frac{757}{730}+\frac{1}{730}i\right)}
Dividing by \frac{757}{730}+\frac{1}{730}i+\left(\frac{27}{365}+\frac{1}{365}i\right)t undoes the multiplication by \frac{757}{730}+\frac{1}{730}i+\left(\frac{27}{365}+\frac{1}{365}i\right)t.
z=\frac{2\left(\left(2866-2i\right)t+\left(703-i\right)\right)}{\left(54+2i\right)t+\left(757+i\right)}
Divide \left(\frac{2866}{365}-\frac{2}{365}i\right)t+\left(\frac{703}{365}-\frac{1}{365}i\right) by \frac{757}{730}+\frac{1}{730}i+\left(\frac{27}{365}+\frac{1}{365}i\right)t.
z=\frac{2\left(\left(2866-2i\right)t+\left(703-i\right)\right)}{\left(54+2i\right)t+\left(757+i\right)}\text{, }z\neq -2
Variable z cannot be equal to -2.