Evaluate
1-\frac{1}{2m}
Expand
1-\frac{1}{2m}
Share
Copied to clipboard
\frac{1}{2m}-\frac{1}{m+n}\left(\frac{m+n}{m}+\frac{\left(-m-n\right)m}{m}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply -m-n times \frac{m}{m}.
\frac{1}{2m}-\frac{1}{m+n}\times \frac{m+n+\left(-m-n\right)m}{m}
Since \frac{m+n}{m} and \frac{\left(-m-n\right)m}{m} have the same denominator, add them by adding their numerators.
\frac{1}{2m}-\frac{1}{m+n}\times \frac{m+n-m^{2}-nm}{m}
Do the multiplications in m+n+\left(-m-n\right)m.
\frac{1}{2m}-\frac{m+n-m^{2}-nm}{\left(m+n\right)m}
Multiply \frac{1}{m+n} times \frac{m+n-m^{2}-nm}{m} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{2m}-\frac{\left(-m+1\right)\left(m+n\right)}{m\left(m+n\right)}
Factor the expressions that are not already factored in \frac{m+n-m^{2}-nm}{\left(m+n\right)m}.
\frac{1}{2m}-\frac{-m+1}{m}
Cancel out m+n in both numerator and denominator.
\frac{1}{2m}-\frac{2\left(-m+1\right)}{2m}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2m and m is 2m. Multiply \frac{-m+1}{m} times \frac{2}{2}.
\frac{1-2\left(-m+1\right)}{2m}
Since \frac{1}{2m} and \frac{2\left(-m+1\right)}{2m} have the same denominator, subtract them by subtracting their numerators.
\frac{1+2m-2}{2m}
Do the multiplications in 1-2\left(-m+1\right).
\frac{-1+2m}{2m}
Combine like terms in 1+2m-2.
\frac{1}{2m}-\frac{1}{m+n}\left(\frac{m+n}{m}+\frac{\left(-m-n\right)m}{m}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply -m-n times \frac{m}{m}.
\frac{1}{2m}-\frac{1}{m+n}\times \frac{m+n+\left(-m-n\right)m}{m}
Since \frac{m+n}{m} and \frac{\left(-m-n\right)m}{m} have the same denominator, add them by adding their numerators.
\frac{1}{2m}-\frac{1}{m+n}\times \frac{m+n-m^{2}-nm}{m}
Do the multiplications in m+n+\left(-m-n\right)m.
\frac{1}{2m}-\frac{m+n-m^{2}-nm}{\left(m+n\right)m}
Multiply \frac{1}{m+n} times \frac{m+n-m^{2}-nm}{m} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{2m}-\frac{\left(-m+1\right)\left(m+n\right)}{m\left(m+n\right)}
Factor the expressions that are not already factored in \frac{m+n-m^{2}-nm}{\left(m+n\right)m}.
\frac{1}{2m}-\frac{-m+1}{m}
Cancel out m+n in both numerator and denominator.
\frac{1}{2m}-\frac{2\left(-m+1\right)}{2m}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2m and m is 2m. Multiply \frac{-m+1}{m} times \frac{2}{2}.
\frac{1-2\left(-m+1\right)}{2m}
Since \frac{1}{2m} and \frac{2\left(-m+1\right)}{2m} have the same denominator, subtract them by subtracting their numerators.
\frac{1+2m-2}{2m}
Do the multiplications in 1-2\left(-m+1\right).
\frac{-1+2m}{2m}
Combine like terms in 1+2m-2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}