Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. b
Tick mark Image

Similar Problems from Web Search

Share

\frac{2a+b}{\left(2a+b\right)\left(2a-b\right)}-\frac{2a-b}{\left(2a+b\right)\left(2a-b\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2a-b and 2a+b is \left(2a+b\right)\left(2a-b\right). Multiply \frac{1}{2a-b} times \frac{2a+b}{2a+b}. Multiply \frac{1}{2a+b} times \frac{2a-b}{2a-b}.
\frac{2a+b-\left(2a-b\right)}{\left(2a+b\right)\left(2a-b\right)}
Since \frac{2a+b}{\left(2a+b\right)\left(2a-b\right)} and \frac{2a-b}{\left(2a+b\right)\left(2a-b\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{2a+b-2a+b}{\left(2a+b\right)\left(2a-b\right)}
Do the multiplications in 2a+b-\left(2a-b\right).
\frac{2b}{\left(2a+b\right)\left(2a-b\right)}
Combine like terms in 2a+b-2a+b.
\frac{2b}{4a^{2}-b^{2}}
Expand \left(2a+b\right)\left(2a-b\right).