Evaluate
\frac{2\left(b-a\right)}{\left(a-2b\right)\left(2b-3a\right)}
Factor
\frac{2\left(b-a\right)}{\left(a-2b\right)\left(2b-3a\right)}
Share
Copied to clipboard
\frac{1}{2\left(a-2b\right)}-\frac{1}{2\left(3a+2b\right)}-\frac{3a}{4b^{2}-9a^{2}}
Factor 2a-4b. Factor 6a+4b.
\frac{3a+2b}{2\left(a-2b\right)\left(3a+2b\right)}-\frac{a-2b}{2\left(a-2b\right)\left(3a+2b\right)}-\frac{3a}{4b^{2}-9a^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2\left(a-2b\right) and 2\left(3a+2b\right) is 2\left(a-2b\right)\left(3a+2b\right). Multiply \frac{1}{2\left(a-2b\right)} times \frac{3a+2b}{3a+2b}. Multiply \frac{1}{2\left(3a+2b\right)} times \frac{a-2b}{a-2b}.
\frac{3a+2b-\left(a-2b\right)}{2\left(a-2b\right)\left(3a+2b\right)}-\frac{3a}{4b^{2}-9a^{2}}
Since \frac{3a+2b}{2\left(a-2b\right)\left(3a+2b\right)} and \frac{a-2b}{2\left(a-2b\right)\left(3a+2b\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{3a+2b-a+2b}{2\left(a-2b\right)\left(3a+2b\right)}-\frac{3a}{4b^{2}-9a^{2}}
Do the multiplications in 3a+2b-\left(a-2b\right).
\frac{2a+4b}{2\left(a-2b\right)\left(3a+2b\right)}-\frac{3a}{4b^{2}-9a^{2}}
Combine like terms in 3a+2b-a+2b.
\frac{2\left(a+2b\right)}{2\left(a-2b\right)\left(3a+2b\right)}-\frac{3a}{4b^{2}-9a^{2}}
Factor the expressions that are not already factored in \frac{2a+4b}{2\left(a-2b\right)\left(3a+2b\right)}.
\frac{a+2b}{\left(a-2b\right)\left(3a+2b\right)}-\frac{3a}{4b^{2}-9a^{2}}
Cancel out 2 in both numerator and denominator.
\frac{a+2b}{\left(a-2b\right)\left(3a+2b\right)}-\frac{3a}{\left(-3a+2b\right)\left(3a+2b\right)}
Factor 4b^{2}-9a^{2}.
\frac{\left(a+2b\right)\left(-3a+2b\right)}{\left(a-2b\right)\left(-3a+2b\right)\left(3a+2b\right)}-\frac{3a\left(a-2b\right)}{\left(a-2b\right)\left(-3a+2b\right)\left(3a+2b\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(a-2b\right)\left(3a+2b\right) and \left(-3a+2b\right)\left(3a+2b\right) is \left(a-2b\right)\left(-3a+2b\right)\left(3a+2b\right). Multiply \frac{a+2b}{\left(a-2b\right)\left(3a+2b\right)} times \frac{-3a+2b}{-3a+2b}. Multiply \frac{3a}{\left(-3a+2b\right)\left(3a+2b\right)} times \frac{a-2b}{a-2b}.
\frac{\left(a+2b\right)\left(-3a+2b\right)-3a\left(a-2b\right)}{\left(a-2b\right)\left(-3a+2b\right)\left(3a+2b\right)}
Since \frac{\left(a+2b\right)\left(-3a+2b\right)}{\left(a-2b\right)\left(-3a+2b\right)\left(3a+2b\right)} and \frac{3a\left(a-2b\right)}{\left(a-2b\right)\left(-3a+2b\right)\left(3a+2b\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{-3a^{2}+2ab-6ba+4b^{2}-3a^{2}+6ab}{\left(a-2b\right)\left(-3a+2b\right)\left(3a+2b\right)}
Do the multiplications in \left(a+2b\right)\left(-3a+2b\right)-3a\left(a-2b\right).
\frac{-6a^{2}+4b^{2}+2ab}{\left(a-2b\right)\left(-3a+2b\right)\left(3a+2b\right)}
Combine like terms in -3a^{2}+2ab-6ba+4b^{2}-3a^{2}+6ab.
\frac{2\left(-a+b\right)\left(3a+2b\right)}{\left(a-2b\right)\left(-3a+2b\right)\left(3a+2b\right)}
Factor the expressions that are not already factored in \frac{-6a^{2}+4b^{2}+2ab}{\left(a-2b\right)\left(-3a+2b\right)\left(3a+2b\right)}.
\frac{2\left(-a+b\right)}{\left(a-2b\right)\left(-3a+2b\right)}
Cancel out 3a+2b in both numerator and denominator.
\frac{2\left(-a+b\right)}{-3a^{2}+8ab-4b^{2}}
Expand \left(a-2b\right)\left(-3a+2b\right).
\frac{-2a+2b}{-3a^{2}+8ab-4b^{2}}
Use the distributive property to multiply 2 by -a+b.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}