Evaluate
\frac{1}{a^{3}}
Expand
\frac{1}{a^{3}}
Share
Copied to clipboard
\frac{\frac{1}{2a^{3}}\times 2\times \frac{\left(a-2b\right)\left(a+2b\right)}{\left(a+2b\right)^{2}}}{\frac{a^{2}+ab-6b^{2}}{a^{2}+5ab+6b^{2}}}
Factor the expressions that are not already factored in \frac{a^{2}-4b^{2}}{a^{2}+4ab+4b^{2}}.
\frac{\frac{1}{2a^{3}}\times 2\times \frac{a-2b}{a+2b}}{\frac{a^{2}+ab-6b^{2}}{a^{2}+5ab+6b^{2}}}
Cancel out a+2b in both numerator and denominator.
\frac{\frac{2}{2a^{3}}\times \frac{a-2b}{a+2b}}{\frac{a^{2}+ab-6b^{2}}{a^{2}+5ab+6b^{2}}}
Express \frac{1}{2a^{3}}\times 2 as a single fraction.
\frac{\frac{2\left(a-2b\right)}{2a^{3}\left(a+2b\right)}}{\frac{a^{2}+ab-6b^{2}}{a^{2}+5ab+6b^{2}}}
Multiply \frac{2}{2a^{3}} times \frac{a-2b}{a+2b} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{a-2b}{\left(a+2b\right)a^{3}}}{\frac{a^{2}+ab-6b^{2}}{a^{2}+5ab+6b^{2}}}
Cancel out 2 in both numerator and denominator.
\frac{\frac{a-2b}{\left(a+2b\right)a^{3}}}{\frac{\left(a-2b\right)\left(a+3b\right)}{\left(a+2b\right)\left(a+3b\right)}}
Factor the expressions that are not already factored in \frac{a^{2}+ab-6b^{2}}{a^{2}+5ab+6b^{2}}.
\frac{\frac{a-2b}{\left(a+2b\right)a^{3}}}{\frac{a-2b}{a+2b}}
Cancel out a+3b in both numerator and denominator.
\frac{\left(a-2b\right)\left(a+2b\right)}{\left(a+2b\right)a^{3}\left(a-2b\right)}
Divide \frac{a-2b}{\left(a+2b\right)a^{3}} by \frac{a-2b}{a+2b} by multiplying \frac{a-2b}{\left(a+2b\right)a^{3}} by the reciprocal of \frac{a-2b}{a+2b}.
\frac{1}{a^{3}}
Cancel out \left(a-2b\right)\left(a+2b\right) in both numerator and denominator.
\frac{\frac{1}{2a^{3}}\times 2\times \frac{\left(a-2b\right)\left(a+2b\right)}{\left(a+2b\right)^{2}}}{\frac{a^{2}+ab-6b^{2}}{a^{2}+5ab+6b^{2}}}
Factor the expressions that are not already factored in \frac{a^{2}-4b^{2}}{a^{2}+4ab+4b^{2}}.
\frac{\frac{1}{2a^{3}}\times 2\times \frac{a-2b}{a+2b}}{\frac{a^{2}+ab-6b^{2}}{a^{2}+5ab+6b^{2}}}
Cancel out a+2b in both numerator and denominator.
\frac{\frac{2}{2a^{3}}\times \frac{a-2b}{a+2b}}{\frac{a^{2}+ab-6b^{2}}{a^{2}+5ab+6b^{2}}}
Express \frac{1}{2a^{3}}\times 2 as a single fraction.
\frac{\frac{2\left(a-2b\right)}{2a^{3}\left(a+2b\right)}}{\frac{a^{2}+ab-6b^{2}}{a^{2}+5ab+6b^{2}}}
Multiply \frac{2}{2a^{3}} times \frac{a-2b}{a+2b} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{a-2b}{\left(a+2b\right)a^{3}}}{\frac{a^{2}+ab-6b^{2}}{a^{2}+5ab+6b^{2}}}
Cancel out 2 in both numerator and denominator.
\frac{\frac{a-2b}{\left(a+2b\right)a^{3}}}{\frac{\left(a-2b\right)\left(a+3b\right)}{\left(a+2b\right)\left(a+3b\right)}}
Factor the expressions that are not already factored in \frac{a^{2}+ab-6b^{2}}{a^{2}+5ab+6b^{2}}.
\frac{\frac{a-2b}{\left(a+2b\right)a^{3}}}{\frac{a-2b}{a+2b}}
Cancel out a+3b in both numerator and denominator.
\frac{\left(a-2b\right)\left(a+2b\right)}{\left(a+2b\right)a^{3}\left(a-2b\right)}
Divide \frac{a-2b}{\left(a+2b\right)a^{3}} by \frac{a-2b}{a+2b} by multiplying \frac{a-2b}{\left(a+2b\right)a^{3}} by the reciprocal of \frac{a-2b}{a+2b}.
\frac{1}{a^{3}}
Cancel out \left(a-2b\right)\left(a+2b\right) in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}