Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\frac{1}{2a^{3}}\times 2\times \frac{\left(a-2b\right)\left(a+2b\right)}{\left(a+2b\right)^{2}}}{\frac{a^{2}+ab-6b^{2}}{a^{2}+5ab+6b^{2}}}
Factor the expressions that are not already factored in \frac{a^{2}-4b^{2}}{a^{2}+4ab+4b^{2}}.
\frac{\frac{1}{2a^{3}}\times 2\times \frac{a-2b}{a+2b}}{\frac{a^{2}+ab-6b^{2}}{a^{2}+5ab+6b^{2}}}
Cancel out a+2b in both numerator and denominator.
\frac{\frac{2}{2a^{3}}\times \frac{a-2b}{a+2b}}{\frac{a^{2}+ab-6b^{2}}{a^{2}+5ab+6b^{2}}}
Express \frac{1}{2a^{3}}\times 2 as a single fraction.
\frac{\frac{2\left(a-2b\right)}{2a^{3}\left(a+2b\right)}}{\frac{a^{2}+ab-6b^{2}}{a^{2}+5ab+6b^{2}}}
Multiply \frac{2}{2a^{3}} times \frac{a-2b}{a+2b} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{a-2b}{\left(a+2b\right)a^{3}}}{\frac{a^{2}+ab-6b^{2}}{a^{2}+5ab+6b^{2}}}
Cancel out 2 in both numerator and denominator.
\frac{\frac{a-2b}{\left(a+2b\right)a^{3}}}{\frac{\left(a-2b\right)\left(a+3b\right)}{\left(a+2b\right)\left(a+3b\right)}}
Factor the expressions that are not already factored in \frac{a^{2}+ab-6b^{2}}{a^{2}+5ab+6b^{2}}.
\frac{\frac{a-2b}{\left(a+2b\right)a^{3}}}{\frac{a-2b}{a+2b}}
Cancel out a+3b in both numerator and denominator.
\frac{\left(a-2b\right)\left(a+2b\right)}{\left(a+2b\right)a^{3}\left(a-2b\right)}
Divide \frac{a-2b}{\left(a+2b\right)a^{3}} by \frac{a-2b}{a+2b} by multiplying \frac{a-2b}{\left(a+2b\right)a^{3}} by the reciprocal of \frac{a-2b}{a+2b}.
\frac{1}{a^{3}}
Cancel out \left(a-2b\right)\left(a+2b\right) in both numerator and denominator.
\frac{\frac{1}{2a^{3}}\times 2\times \frac{\left(a-2b\right)\left(a+2b\right)}{\left(a+2b\right)^{2}}}{\frac{a^{2}+ab-6b^{2}}{a^{2}+5ab+6b^{2}}}
Factor the expressions that are not already factored in \frac{a^{2}-4b^{2}}{a^{2}+4ab+4b^{2}}.
\frac{\frac{1}{2a^{3}}\times 2\times \frac{a-2b}{a+2b}}{\frac{a^{2}+ab-6b^{2}}{a^{2}+5ab+6b^{2}}}
Cancel out a+2b in both numerator and denominator.
\frac{\frac{2}{2a^{3}}\times \frac{a-2b}{a+2b}}{\frac{a^{2}+ab-6b^{2}}{a^{2}+5ab+6b^{2}}}
Express \frac{1}{2a^{3}}\times 2 as a single fraction.
\frac{\frac{2\left(a-2b\right)}{2a^{3}\left(a+2b\right)}}{\frac{a^{2}+ab-6b^{2}}{a^{2}+5ab+6b^{2}}}
Multiply \frac{2}{2a^{3}} times \frac{a-2b}{a+2b} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{a-2b}{\left(a+2b\right)a^{3}}}{\frac{a^{2}+ab-6b^{2}}{a^{2}+5ab+6b^{2}}}
Cancel out 2 in both numerator and denominator.
\frac{\frac{a-2b}{\left(a+2b\right)a^{3}}}{\frac{\left(a-2b\right)\left(a+3b\right)}{\left(a+2b\right)\left(a+3b\right)}}
Factor the expressions that are not already factored in \frac{a^{2}+ab-6b^{2}}{a^{2}+5ab+6b^{2}}.
\frac{\frac{a-2b}{\left(a+2b\right)a^{3}}}{\frac{a-2b}{a+2b}}
Cancel out a+3b in both numerator and denominator.
\frac{\left(a-2b\right)\left(a+2b\right)}{\left(a+2b\right)a^{3}\left(a-2b\right)}
Divide \frac{a-2b}{\left(a+2b\right)a^{3}} by \frac{a-2b}{a+2b} by multiplying \frac{a-2b}{\left(a+2b\right)a^{3}} by the reciprocal of \frac{a-2b}{a+2b}.
\frac{1}{a^{3}}
Cancel out \left(a-2b\right)\left(a+2b\right) in both numerator and denominator.