Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{2+\sqrt{3}}{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}\times \frac{1}{2+\sqrt{3}}
Rationalize the denominator of \frac{1}{2-\sqrt{3}} by multiplying numerator and denominator by 2+\sqrt{3}.
\frac{2+\sqrt{3}}{2^{2}-\left(\sqrt{3}\right)^{2}}\times \frac{1}{2+\sqrt{3}}
Consider \left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{2+\sqrt{3}}{4-3}\times \frac{1}{2+\sqrt{3}}
Square 2. Square \sqrt{3}.
\frac{2+\sqrt{3}}{1}\times \frac{1}{2+\sqrt{3}}
Subtract 3 from 4 to get 1.
\left(2+\sqrt{3}\right)\times \frac{1}{2+\sqrt{3}}
Anything divided by one gives itself.
\left(2+\sqrt{3}\right)\times \frac{2-\sqrt{3}}{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}
Rationalize the denominator of \frac{1}{2+\sqrt{3}} by multiplying numerator and denominator by 2-\sqrt{3}.
\left(2+\sqrt{3}\right)\times \frac{2-\sqrt{3}}{2^{2}-\left(\sqrt{3}\right)^{2}}
Consider \left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\left(2+\sqrt{3}\right)\times \frac{2-\sqrt{3}}{4-3}
Square 2. Square \sqrt{3}.
\left(2+\sqrt{3}\right)\times \frac{2-\sqrt{3}}{1}
Subtract 3 from 4 to get 1.
\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)
Anything divided by one gives itself.
2^{2}-\left(\sqrt{3}\right)^{2}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
4-\left(\sqrt{3}\right)^{2}
Calculate 2 to the power of 2 and get 4.
4-3
The square of \sqrt{3} is 3.
1
Subtract 3 from 4 to get 1.