Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{-x+1}{2\left(x+1\right)\left(-x+1\right)}+\frac{x+1}{2\left(x+1\right)\left(-x+1\right)}+\frac{x^{2}-2}{1-x^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2\left(1+x\right) and 2\left(1-x\right) is 2\left(x+1\right)\left(-x+1\right). Multiply \frac{1}{2\left(1+x\right)} times \frac{-x+1}{-x+1}. Multiply \frac{1}{2\left(1-x\right)} times \frac{x+1}{x+1}.
\frac{-x+1+x+1}{2\left(x+1\right)\left(-x+1\right)}+\frac{x^{2}-2}{1-x^{2}}
Since \frac{-x+1}{2\left(x+1\right)\left(-x+1\right)} and \frac{x+1}{2\left(x+1\right)\left(-x+1\right)} have the same denominator, add them by adding their numerators.
\frac{2}{2\left(x+1\right)\left(-x+1\right)}+\frac{x^{2}-2}{1-x^{2}}
Combine like terms in -x+1+x+1.
\frac{2}{2\left(x+1\right)\left(-x+1\right)}+\frac{x^{2}-2}{\left(x-1\right)\left(-x-1\right)}
Factor 1-x^{2}.
\frac{2\left(-1\right)}{2\left(x-1\right)\left(x+1\right)}+\frac{-2\left(x^{2}-2\right)}{2\left(x-1\right)\left(x+1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2\left(x+1\right)\left(-x+1\right) and \left(x-1\right)\left(-x-1\right) is 2\left(x-1\right)\left(x+1\right). Multiply \frac{2}{2\left(x+1\right)\left(-x+1\right)} times \frac{-1}{-1}. Multiply \frac{x^{2}-2}{\left(x-1\right)\left(-x-1\right)} times \frac{-2}{-2}.
\frac{2\left(-1\right)-2\left(x^{2}-2\right)}{2\left(x-1\right)\left(x+1\right)}
Since \frac{2\left(-1\right)}{2\left(x-1\right)\left(x+1\right)} and \frac{-2\left(x^{2}-2\right)}{2\left(x-1\right)\left(x+1\right)} have the same denominator, add them by adding their numerators.
\frac{-2-2x^{2}+4}{2\left(x-1\right)\left(x+1\right)}
Do the multiplications in 2\left(-1\right)-2\left(x^{2}-2\right).
\frac{2-2x^{2}}{2\left(x-1\right)\left(x+1\right)}
Combine like terms in -2-2x^{2}+4.
\frac{2\left(x-1\right)\left(-x-1\right)}{2\left(x-1\right)\left(x+1\right)}
Factor the expressions that are not already factored in \frac{2-2x^{2}}{2\left(x-1\right)\left(x+1\right)}.
\frac{-2\left(x-1\right)\left(x+1\right)}{2\left(x-1\right)\left(x+1\right)}
Extract the negative sign in -1-x.
-1
Cancel out 2\left(x-1\right)\left(x+1\right) in both numerator and denominator.