Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{1}{2}xx+\frac{1}{2}x\times 1.5=6
Use the distributive property to multiply \frac{1}{2}x by x+1.5.
\frac{1}{2}x^{2}+\frac{1}{2}x\times 1.5=6
Multiply x and x to get x^{2}.
\frac{1}{2}x^{2}+\frac{1}{2}x\times \frac{3}{2}=6
Convert decimal number 1.5 to fraction \frac{15}{10}. Reduce the fraction \frac{15}{10} to lowest terms by extracting and canceling out 5.
\frac{1}{2}x^{2}+\frac{1\times 3}{2\times 2}x=6
Multiply \frac{1}{2} times \frac{3}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{2}x^{2}+\frac{3}{4}x=6
Do the multiplications in the fraction \frac{1\times 3}{2\times 2}.
\frac{1}{2}x^{2}+\frac{3}{4}x-6=0
Subtract 6 from both sides.
x=\frac{-\frac{3}{4}±\sqrt{\left(\frac{3}{4}\right)^{2}-4\times \frac{1}{2}\left(-6\right)}}{2\times \frac{1}{2}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{1}{2} for a, \frac{3}{4} for b, and -6 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\frac{3}{4}±\sqrt{\frac{9}{16}-4\times \frac{1}{2}\left(-6\right)}}{2\times \frac{1}{2}}
Square \frac{3}{4} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\frac{3}{4}±\sqrt{\frac{9}{16}-2\left(-6\right)}}{2\times \frac{1}{2}}
Multiply -4 times \frac{1}{2}.
x=\frac{-\frac{3}{4}±\sqrt{\frac{9}{16}+12}}{2\times \frac{1}{2}}
Multiply -2 times -6.
x=\frac{-\frac{3}{4}±\sqrt{\frac{201}{16}}}{2\times \frac{1}{2}}
Add \frac{9}{16} to 12.
x=\frac{-\frac{3}{4}±\frac{\sqrt{201}}{4}}{2\times \frac{1}{2}}
Take the square root of \frac{201}{16}.
x=\frac{-\frac{3}{4}±\frac{\sqrt{201}}{4}}{1}
Multiply 2 times \frac{1}{2}.
x=\frac{\sqrt{201}-3}{4}
Now solve the equation x=\frac{-\frac{3}{4}±\frac{\sqrt{201}}{4}}{1} when ± is plus. Add -\frac{3}{4} to \frac{\sqrt{201}}{4}.
x=\frac{-\sqrt{201}-3}{4}
Now solve the equation x=\frac{-\frac{3}{4}±\frac{\sqrt{201}}{4}}{1} when ± is minus. Subtract \frac{\sqrt{201}}{4} from -\frac{3}{4}.
x=\frac{\sqrt{201}-3}{4} x=\frac{-\sqrt{201}-3}{4}
The equation is now solved.
\frac{1}{2}xx+\frac{1}{2}x\times 1.5=6
Use the distributive property to multiply \frac{1}{2}x by x+1.5.
\frac{1}{2}x^{2}+\frac{1}{2}x\times 1.5=6
Multiply x and x to get x^{2}.
\frac{1}{2}x^{2}+\frac{1}{2}x\times \frac{3}{2}=6
Convert decimal number 1.5 to fraction \frac{15}{10}. Reduce the fraction \frac{15}{10} to lowest terms by extracting and canceling out 5.
\frac{1}{2}x^{2}+\frac{1\times 3}{2\times 2}x=6
Multiply \frac{1}{2} times \frac{3}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{2}x^{2}+\frac{3}{4}x=6
Do the multiplications in the fraction \frac{1\times 3}{2\times 2}.
\frac{\frac{1}{2}x^{2}+\frac{3}{4}x}{\frac{1}{2}}=\frac{6}{\frac{1}{2}}
Multiply both sides by 2.
x^{2}+\frac{\frac{3}{4}}{\frac{1}{2}}x=\frac{6}{\frac{1}{2}}
Dividing by \frac{1}{2} undoes the multiplication by \frac{1}{2}.
x^{2}+\frac{3}{2}x=\frac{6}{\frac{1}{2}}
Divide \frac{3}{4} by \frac{1}{2} by multiplying \frac{3}{4} by the reciprocal of \frac{1}{2}.
x^{2}+\frac{3}{2}x=12
Divide 6 by \frac{1}{2} by multiplying 6 by the reciprocal of \frac{1}{2}.
x^{2}+\frac{3}{2}x+\left(\frac{3}{4}\right)^{2}=12+\left(\frac{3}{4}\right)^{2}
Divide \frac{3}{2}, the coefficient of the x term, by 2 to get \frac{3}{4}. Then add the square of \frac{3}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{3}{2}x+\frac{9}{16}=12+\frac{9}{16}
Square \frac{3}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{3}{2}x+\frac{9}{16}=\frac{201}{16}
Add 12 to \frac{9}{16}.
\left(x+\frac{3}{4}\right)^{2}=\frac{201}{16}
Factor x^{2}+\frac{3}{2}x+\frac{9}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{4}\right)^{2}}=\sqrt{\frac{201}{16}}
Take the square root of both sides of the equation.
x+\frac{3}{4}=\frac{\sqrt{201}}{4} x+\frac{3}{4}=-\frac{\sqrt{201}}{4}
Simplify.
x=\frac{\sqrt{201}-3}{4} x=\frac{-\sqrt{201}-3}{4}
Subtract \frac{3}{4} from both sides of the equation.