Solve for x (complex solution)
x=1+\sqrt{7}i\approx 1+2.645751311i
x=-\sqrt{7}i+1\approx 1-2.645751311i
Graph
Share
Copied to clipboard
\frac{1}{2}x^{2}-x+4=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-1\right)±\sqrt{1-4\times \frac{1}{2}\times 4}}{2\times \frac{1}{2}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{1}{2} for a, -1 for b, and 4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-1\right)±\sqrt{1-2\times 4}}{2\times \frac{1}{2}}
Multiply -4 times \frac{1}{2}.
x=\frac{-\left(-1\right)±\sqrt{1-8}}{2\times \frac{1}{2}}
Multiply -2 times 4.
x=\frac{-\left(-1\right)±\sqrt{-7}}{2\times \frac{1}{2}}
Add 1 to -8.
x=\frac{-\left(-1\right)±\sqrt{7}i}{2\times \frac{1}{2}}
Take the square root of -7.
x=\frac{1±\sqrt{7}i}{2\times \frac{1}{2}}
The opposite of -1 is 1.
x=\frac{1±\sqrt{7}i}{1}
Multiply 2 times \frac{1}{2}.
x=\frac{1+\sqrt{7}i}{1}
Now solve the equation x=\frac{1±\sqrt{7}i}{1} when ± is plus. Add 1 to i\sqrt{7}.
x=1+\sqrt{7}i
Divide 1+i\sqrt{7} by 1.
x=\frac{-\sqrt{7}i+1}{1}
Now solve the equation x=\frac{1±\sqrt{7}i}{1} when ± is minus. Subtract i\sqrt{7} from 1.
x=-\sqrt{7}i+1
Divide 1-i\sqrt{7} by 1.
x=1+\sqrt{7}i x=-\sqrt{7}i+1
The equation is now solved.
\frac{1}{2}x^{2}-x+4=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{1}{2}x^{2}-x+4-4=-4
Subtract 4 from both sides of the equation.
\frac{1}{2}x^{2}-x=-4
Subtracting 4 from itself leaves 0.
\frac{\frac{1}{2}x^{2}-x}{\frac{1}{2}}=-\frac{4}{\frac{1}{2}}
Multiply both sides by 2.
x^{2}+\left(-\frac{1}{\frac{1}{2}}\right)x=-\frac{4}{\frac{1}{2}}
Dividing by \frac{1}{2} undoes the multiplication by \frac{1}{2}.
x^{2}-2x=-\frac{4}{\frac{1}{2}}
Divide -1 by \frac{1}{2} by multiplying -1 by the reciprocal of \frac{1}{2}.
x^{2}-2x=-8
Divide -4 by \frac{1}{2} by multiplying -4 by the reciprocal of \frac{1}{2}.
x^{2}-2x+1=-8+1
Divide -2, the coefficient of the x term, by 2 to get -1. Then add the square of -1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-2x+1=-7
Add -8 to 1.
\left(x-1\right)^{2}=-7
Factor x^{2}-2x+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-1\right)^{2}}=\sqrt{-7}
Take the square root of both sides of the equation.
x-1=\sqrt{7}i x-1=-\sqrt{7}i
Simplify.
x=1+\sqrt{7}i x=-\sqrt{7}i+1
Add 1 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}