Solve for x
x=-2
x=8
Graph
Share
Copied to clipboard
\frac{1}{2}x^{2}-8-3x=0
Subtract 3x from both sides.
\frac{1}{2}x^{2}-3x-8=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\times \frac{1}{2}\left(-8\right)}}{2\times \frac{1}{2}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{1}{2} for a, -3 for b, and -8 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-3\right)±\sqrt{9-4\times \frac{1}{2}\left(-8\right)}}{2\times \frac{1}{2}}
Square -3.
x=\frac{-\left(-3\right)±\sqrt{9-2\left(-8\right)}}{2\times \frac{1}{2}}
Multiply -4 times \frac{1}{2}.
x=\frac{-\left(-3\right)±\sqrt{9+16}}{2\times \frac{1}{2}}
Multiply -2 times -8.
x=\frac{-\left(-3\right)±\sqrt{25}}{2\times \frac{1}{2}}
Add 9 to 16.
x=\frac{-\left(-3\right)±5}{2\times \frac{1}{2}}
Take the square root of 25.
x=\frac{3±5}{2\times \frac{1}{2}}
The opposite of -3 is 3.
x=\frac{3±5}{1}
Multiply 2 times \frac{1}{2}.
x=\frac{8}{1}
Now solve the equation x=\frac{3±5}{1} when ± is plus. Add 3 to 5.
x=8
Divide 8 by 1.
x=-\frac{2}{1}
Now solve the equation x=\frac{3±5}{1} when ± is minus. Subtract 5 from 3.
x=-2
Divide -2 by 1.
x=8 x=-2
The equation is now solved.
\frac{1}{2}x^{2}-8-3x=0
Subtract 3x from both sides.
\frac{1}{2}x^{2}-3x=8
Add 8 to both sides. Anything plus zero gives itself.
\frac{\frac{1}{2}x^{2}-3x}{\frac{1}{2}}=\frac{8}{\frac{1}{2}}
Multiply both sides by 2.
x^{2}+\left(-\frac{3}{\frac{1}{2}}\right)x=\frac{8}{\frac{1}{2}}
Dividing by \frac{1}{2} undoes the multiplication by \frac{1}{2}.
x^{2}-6x=\frac{8}{\frac{1}{2}}
Divide -3 by \frac{1}{2} by multiplying -3 by the reciprocal of \frac{1}{2}.
x^{2}-6x=16
Divide 8 by \frac{1}{2} by multiplying 8 by the reciprocal of \frac{1}{2}.
x^{2}-6x+\left(-3\right)^{2}=16+\left(-3\right)^{2}
Divide -6, the coefficient of the x term, by 2 to get -3. Then add the square of -3 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-6x+9=16+9
Square -3.
x^{2}-6x+9=25
Add 16 to 9.
\left(x-3\right)^{2}=25
Factor x^{2}-6x+9. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-3\right)^{2}}=\sqrt{25}
Take the square root of both sides of the equation.
x-3=5 x-3=-5
Simplify.
x=8 x=-2
Add 3 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}