Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{1}{2}x^{2}=7
Add 7 to both sides. Anything plus zero gives itself.
x^{2}=7\times 2
Multiply both sides by 2, the reciprocal of \frac{1}{2}.
x^{2}=14
Multiply 7 and 2 to get 14.
x=\sqrt{14} x=-\sqrt{14}
Take the square root of both sides of the equation.
\frac{1}{2}x^{2}-7=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\times \frac{1}{2}\left(-7\right)}}{2\times \frac{1}{2}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{1}{2} for a, 0 for b, and -7 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times \frac{1}{2}\left(-7\right)}}{2\times \frac{1}{2}}
Square 0.
x=\frac{0±\sqrt{-2\left(-7\right)}}{2\times \frac{1}{2}}
Multiply -4 times \frac{1}{2}.
x=\frac{0±\sqrt{14}}{2\times \frac{1}{2}}
Multiply -2 times -7.
x=\frac{0±\sqrt{14}}{1}
Multiply 2 times \frac{1}{2}.
x=\sqrt{14}
Now solve the equation x=\frac{0±\sqrt{14}}{1} when ± is plus.
x=-\sqrt{14}
Now solve the equation x=\frac{0±\sqrt{14}}{1} when ± is minus.
x=\sqrt{14} x=-\sqrt{14}
The equation is now solved.