Solve for x
x=3
x=5
Graph
Share
Copied to clipboard
\frac{1}{2}x^{2}-4x+\frac{21}{2}-3=0
Combine -3x and -x to get -4x.
\frac{1}{2}x^{2}-4x+\frac{15}{2}=0
Subtract 3 from \frac{21}{2} to get \frac{15}{2}.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times \frac{1}{2}\times \frac{15}{2}}}{2\times \frac{1}{2}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{1}{2} for a, -4 for b, and \frac{15}{2} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-4\right)±\sqrt{16-4\times \frac{1}{2}\times \frac{15}{2}}}{2\times \frac{1}{2}}
Square -4.
x=\frac{-\left(-4\right)±\sqrt{16-2\times \frac{15}{2}}}{2\times \frac{1}{2}}
Multiply -4 times \frac{1}{2}.
x=\frac{-\left(-4\right)±\sqrt{16-15}}{2\times \frac{1}{2}}
Multiply -2 times \frac{15}{2}.
x=\frac{-\left(-4\right)±\sqrt{1}}{2\times \frac{1}{2}}
Add 16 to -15.
x=\frac{-\left(-4\right)±1}{2\times \frac{1}{2}}
Take the square root of 1.
x=\frac{4±1}{2\times \frac{1}{2}}
The opposite of -4 is 4.
x=\frac{4±1}{1}
Multiply 2 times \frac{1}{2}.
x=\frac{5}{1}
Now solve the equation x=\frac{4±1}{1} when ± is plus. Add 4 to 1.
x=5
Divide 5 by 1.
x=\frac{3}{1}
Now solve the equation x=\frac{4±1}{1} when ± is minus. Subtract 1 from 4.
x=3
Divide 3 by 1.
x=5 x=3
The equation is now solved.
\frac{1}{2}x^{2}-4x+\frac{21}{2}-3=0
Combine -3x and -x to get -4x.
\frac{1}{2}x^{2}-4x+\frac{15}{2}=0
Subtract 3 from \frac{21}{2} to get \frac{15}{2}.
\frac{1}{2}x^{2}-4x=-\frac{15}{2}
Subtract \frac{15}{2} from both sides. Anything subtracted from zero gives its negation.
\frac{\frac{1}{2}x^{2}-4x}{\frac{1}{2}}=-\frac{\frac{15}{2}}{\frac{1}{2}}
Multiply both sides by 2.
x^{2}+\left(-\frac{4}{\frac{1}{2}}\right)x=-\frac{\frac{15}{2}}{\frac{1}{2}}
Dividing by \frac{1}{2} undoes the multiplication by \frac{1}{2}.
x^{2}-8x=-\frac{\frac{15}{2}}{\frac{1}{2}}
Divide -4 by \frac{1}{2} by multiplying -4 by the reciprocal of \frac{1}{2}.
x^{2}-8x=-15
Divide -\frac{15}{2} by \frac{1}{2} by multiplying -\frac{15}{2} by the reciprocal of \frac{1}{2}.
x^{2}-8x+\left(-4\right)^{2}=-15+\left(-4\right)^{2}
Divide -8, the coefficient of the x term, by 2 to get -4. Then add the square of -4 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-8x+16=-15+16
Square -4.
x^{2}-8x+16=1
Add -15 to 16.
\left(x-4\right)^{2}=1
Factor x^{2}-8x+16. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-4\right)^{2}}=\sqrt{1}
Take the square root of both sides of the equation.
x-4=1 x-4=-1
Simplify.
x=5 x=3
Add 4 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}