Solve for x
x=2
Graph
Share
Copied to clipboard
\frac{1}{2}x^{2}-2x+4=2
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
\frac{1}{2}x^{2}-2x+4-2=2-2
Subtract 2 from both sides of the equation.
\frac{1}{2}x^{2}-2x+4-2=0
Subtracting 2 from itself leaves 0.
\frac{1}{2}x^{2}-2x+2=0
Subtract 2 from 4.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\times \frac{1}{2}\times 2}}{2\times \frac{1}{2}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{1}{2} for a, -2 for b, and 2 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-2\right)±\sqrt{4-4\times \frac{1}{2}\times 2}}{2\times \frac{1}{2}}
Square -2.
x=\frac{-\left(-2\right)±\sqrt{4-2\times 2}}{2\times \frac{1}{2}}
Multiply -4 times \frac{1}{2}.
x=\frac{-\left(-2\right)±\sqrt{4-4}}{2\times \frac{1}{2}}
Multiply -2 times 2.
x=\frac{-\left(-2\right)±\sqrt{0}}{2\times \frac{1}{2}}
Add 4 to -4.
x=-\frac{-2}{2\times \frac{1}{2}}
Take the square root of 0.
x=\frac{2}{2\times \frac{1}{2}}
The opposite of -2 is 2.
x=\frac{2}{1}
Multiply 2 times \frac{1}{2}.
\frac{1}{2}x^{2}-2x+4=2
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{1}{2}x^{2}-2x+4-4=2-4
Subtract 4 from both sides of the equation.
\frac{1}{2}x^{2}-2x=2-4
Subtracting 4 from itself leaves 0.
\frac{1}{2}x^{2}-2x=-2
Subtract 4 from 2.
\frac{\frac{1}{2}x^{2}-2x}{\frac{1}{2}}=-\frac{2}{\frac{1}{2}}
Multiply both sides by 2.
x^{2}+\left(-\frac{2}{\frac{1}{2}}\right)x=-\frac{2}{\frac{1}{2}}
Dividing by \frac{1}{2} undoes the multiplication by \frac{1}{2}.
x^{2}-4x=-\frac{2}{\frac{1}{2}}
Divide -2 by \frac{1}{2} by multiplying -2 by the reciprocal of \frac{1}{2}.
x^{2}-4x=-4
Divide -2 by \frac{1}{2} by multiplying -2 by the reciprocal of \frac{1}{2}.
x^{2}-4x+\left(-2\right)^{2}=-4+\left(-2\right)^{2}
Divide -4, the coefficient of the x term, by 2 to get -2. Then add the square of -2 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-4x+4=-4+4
Square -2.
x^{2}-4x+4=0
Add -4 to 4.
\left(x-2\right)^{2}=0
Factor x^{2}-4x+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-2\right)^{2}}=\sqrt{0}
Take the square root of both sides of the equation.
x-2=0 x-2=0
Simplify.
x=2 x=2
Add 2 to both sides of the equation.
x=2
The equation is now solved. Solutions are the same.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}