Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

8\left(\frac{1}{2}x^{2}-\frac{\pi }{2}x\right)+57-8=0
Multiply both sides of the equation by 8, the least common multiple of 2,8.
8\left(\frac{1}{2}x^{2}-\frac{\pi x}{2}\right)+57-8=0
Express \frac{\pi }{2}x as a single fraction.
4x^{2}+8\left(-\frac{\pi x}{2}\right)+57-8=0
Use the distributive property to multiply 8 by \frac{1}{2}x^{2}-\frac{\pi x}{2}.
4x^{2}-4\pi x+57-8=0
Cancel out 2, the greatest common factor in 8 and 2.
4x^{2}-4\pi x+49=0
Subtract 8 from 57 to get 49.
4x^{2}+\left(-4\pi \right)x+49=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-4\pi \right)±\sqrt{\left(-4\pi \right)^{2}-4\times 4\times 49}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, -4\pi for b, and 49 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-4\pi \right)±\sqrt{16\pi ^{2}-4\times 4\times 49}}{2\times 4}
Square -4\pi .
x=\frac{-\left(-4\pi \right)±\sqrt{16\pi ^{2}-16\times 49}}{2\times 4}
Multiply -4 times 4.
x=\frac{-\left(-4\pi \right)±\sqrt{16\pi ^{2}-784}}{2\times 4}
Multiply -16 times 49.
x=\frac{-\left(-4\pi \right)±4i\sqrt{-\pi ^{2}+49}}{2\times 4}
Take the square root of 16\pi ^{2}-784.
x=\frac{4\pi ±4i\sqrt{-\pi ^{2}+49}}{2\times 4}
The opposite of -4\pi is 4\pi .
x=\frac{4\pi ±4i\sqrt{-\pi ^{2}+49}}{8}
Multiply 2 times 4.
x=\frac{4\pi +4i\sqrt{-\pi ^{2}+49}}{8}
Now solve the equation x=\frac{4\pi ±4i\sqrt{-\pi ^{2}+49}}{8} when ± is plus. Add 4\pi to 4i\sqrt{-\pi ^{2}+49}.
x=\frac{\pi +i\sqrt{-\pi ^{2}+49}}{2}
Divide 4\pi +4i\sqrt{49-\pi ^{2}} by 8.
x=\frac{-4i\sqrt{-\pi ^{2}+49}+4\pi }{8}
Now solve the equation x=\frac{4\pi ±4i\sqrt{-\pi ^{2}+49}}{8} when ± is minus. Subtract 4i\sqrt{-\pi ^{2}+49} from 4\pi .
x=\frac{-i\sqrt{-\pi ^{2}+49}+\pi }{2}
Divide 4\pi -4i\sqrt{49-\pi ^{2}} by 8.
x=\frac{\pi +i\sqrt{-\pi ^{2}+49}}{2} x=\frac{-i\sqrt{-\pi ^{2}+49}+\pi }{2}
The equation is now solved.
8\left(\frac{1}{2}x^{2}-\frac{\pi }{2}x\right)+57-8=0
Multiply both sides of the equation by 8, the least common multiple of 2,8.
8\left(\frac{1}{2}x^{2}-\frac{\pi x}{2}\right)+57-8=0
Express \frac{\pi }{2}x as a single fraction.
4x^{2}+8\left(-\frac{\pi x}{2}\right)+57-8=0
Use the distributive property to multiply 8 by \frac{1}{2}x^{2}-\frac{\pi x}{2}.
4x^{2}-4\pi x+57-8=0
Cancel out 2, the greatest common factor in 8 and 2.
4x^{2}-4\pi x+49=0
Subtract 8 from 57 to get 49.
4x^{2}-4\pi x=-49
Subtract 49 from both sides. Anything subtracted from zero gives its negation.
4x^{2}+\left(-4\pi \right)x=-49
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{4x^{2}+\left(-4\pi \right)x}{4}=-\frac{49}{4}
Divide both sides by 4.
x^{2}+\left(-\frac{4\pi }{4}\right)x=-\frac{49}{4}
Dividing by 4 undoes the multiplication by 4.
x^{2}+\left(-\pi \right)x=-\frac{49}{4}
Divide -4\pi by 4.
x^{2}+\left(-\pi \right)x+\left(-\frac{\pi }{2}\right)^{2}=-\frac{49}{4}+\left(-\frac{\pi }{2}\right)^{2}
Divide -\pi , the coefficient of the x term, by 2 to get -\frac{\pi }{2}. Then add the square of -\frac{\pi }{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\left(-\pi \right)x+\frac{\pi ^{2}}{4}=\frac{-49+\pi ^{2}}{4}
Square -\frac{\pi }{2}.
x^{2}+\left(-\pi \right)x+\frac{\pi ^{2}}{4}=\frac{\pi ^{2}-49}{4}
Add -\frac{49}{4} to \frac{\pi ^{2}}{4}.
\left(x-\frac{\pi }{2}\right)^{2}=\frac{\pi ^{2}-49}{4}
Factor x^{2}+\left(-\pi \right)x+\frac{\pi ^{2}}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{\pi }{2}\right)^{2}}=\sqrt{\frac{\pi ^{2}-49}{4}}
Take the square root of both sides of the equation.
x-\frac{\pi }{2}=\frac{i\sqrt{-\pi ^{2}+49}}{2} x-\frac{\pi }{2}=-\frac{i\sqrt{-\pi ^{2}+49}}{2}
Simplify.
x=\frac{\pi +i\sqrt{-\pi ^{2}+49}}{2} x=\frac{-i\sqrt{-\pi ^{2}+49}+\pi }{2}
Add \frac{\pi }{2} to both sides of the equation.