Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{1}{2}x^{2}=1-2
Subtract 2 from both sides.
\frac{1}{2}x^{2}=-1
Subtract 2 from 1 to get -1.
x^{2}=-2
Multiply both sides by 2, the reciprocal of \frac{1}{2}.
x=\sqrt{2}i x=-\sqrt{2}i
The equation is now solved.
\frac{1}{2}x^{2}+2-1=0
Subtract 1 from both sides.
\frac{1}{2}x^{2}+1=0
Subtract 1 from 2 to get 1.
x=\frac{0±\sqrt{0^{2}-4\times \frac{1}{2}}}{2\times \frac{1}{2}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{1}{2} for a, 0 for b, and 1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times \frac{1}{2}}}{2\times \frac{1}{2}}
Square 0.
x=\frac{0±\sqrt{-2}}{2\times \frac{1}{2}}
Multiply -4 times \frac{1}{2}.
x=\frac{0±\sqrt{2}i}{2\times \frac{1}{2}}
Take the square root of -2.
x=\frac{0±\sqrt{2}i}{1}
Multiply 2 times \frac{1}{2}.
x=\sqrt{2}i
Now solve the equation x=\frac{0±\sqrt{2}i}{1} when ± is plus.
x=-\sqrt{2}i
Now solve the equation x=\frac{0±\sqrt{2}i}{1} when ± is minus.
x=\sqrt{2}i x=-\sqrt{2}i
The equation is now solved.