Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{1}{2}x^{2}+\frac{1}{6}-\frac{2}{9}=0
Subtract \frac{2}{9} from both sides.
\frac{1}{2}x^{2}-\frac{1}{18}=0
Subtract \frac{2}{9} from \frac{1}{6} to get -\frac{1}{18}.
9x^{2}-1=0
Multiply both sides by 18.
\left(3x-1\right)\left(3x+1\right)=0
Consider 9x^{2}-1. Rewrite 9x^{2}-1 as \left(3x\right)^{2}-1^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
x=\frac{1}{3} x=-\frac{1}{3}
To find equation solutions, solve 3x-1=0 and 3x+1=0.
\frac{1}{2}x^{2}=\frac{2}{9}-\frac{1}{6}
Subtract \frac{1}{6} from both sides.
\frac{1}{2}x^{2}=\frac{1}{18}
Subtract \frac{1}{6} from \frac{2}{9} to get \frac{1}{18}.
x^{2}=\frac{1}{18}\times 2
Multiply both sides by 2, the reciprocal of \frac{1}{2}.
x^{2}=\frac{1}{9}
Multiply \frac{1}{18} and 2 to get \frac{1}{9}.
x=\frac{1}{3} x=-\frac{1}{3}
Take the square root of both sides of the equation.
\frac{1}{2}x^{2}+\frac{1}{6}-\frac{2}{9}=0
Subtract \frac{2}{9} from both sides.
\frac{1}{2}x^{2}-\frac{1}{18}=0
Subtract \frac{2}{9} from \frac{1}{6} to get -\frac{1}{18}.
x=\frac{0±\sqrt{0^{2}-4\times \frac{1}{2}\left(-\frac{1}{18}\right)}}{2\times \frac{1}{2}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{1}{2} for a, 0 for b, and -\frac{1}{18} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times \frac{1}{2}\left(-\frac{1}{18}\right)}}{2\times \frac{1}{2}}
Square 0.
x=\frac{0±\sqrt{-2\left(-\frac{1}{18}\right)}}{2\times \frac{1}{2}}
Multiply -4 times \frac{1}{2}.
x=\frac{0±\sqrt{\frac{1}{9}}}{2\times \frac{1}{2}}
Multiply -2 times -\frac{1}{18}.
x=\frac{0±\frac{1}{3}}{2\times \frac{1}{2}}
Take the square root of \frac{1}{9}.
x=\frac{0±\frac{1}{3}}{1}
Multiply 2 times \frac{1}{2}.
x=\frac{1}{3}
Now solve the equation x=\frac{0±\frac{1}{3}}{1} when ± is plus.
x=-\frac{1}{3}
Now solve the equation x=\frac{0±\frac{1}{3}}{1} when ± is minus.
x=\frac{1}{3} x=-\frac{1}{3}
The equation is now solved.