Solve for t
t=-1
Quiz
Quadratic Equation
5 problems similar to:
\frac { 1 } { 2 } t ^ { 2 } + \frac { 1 } { 2 } + t = 0
Share
Copied to clipboard
\frac{1}{2}t^{2}+t+\frac{1}{2}=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
t=\frac{-1±\sqrt{1^{2}-4\times \frac{1}{2}\times \frac{1}{2}}}{2\times \frac{1}{2}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{1}{2} for a, 1 for b, and \frac{1}{2} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-1±\sqrt{1-4\times \frac{1}{2}\times \frac{1}{2}}}{2\times \frac{1}{2}}
Square 1.
t=\frac{-1±\sqrt{1-2\times \frac{1}{2}}}{2\times \frac{1}{2}}
Multiply -4 times \frac{1}{2}.
t=\frac{-1±\sqrt{1-1}}{2\times \frac{1}{2}}
Multiply -2 times \frac{1}{2}.
t=\frac{-1±\sqrt{0}}{2\times \frac{1}{2}}
Add 1 to -1.
t=-\frac{1}{2\times \frac{1}{2}}
Take the square root of 0.
t=-\frac{1}{1}
Multiply 2 times \frac{1}{2}.
\frac{1}{2}t^{2}+t+\frac{1}{2}=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{1}{2}t^{2}+t+\frac{1}{2}-\frac{1}{2}=-\frac{1}{2}
Subtract \frac{1}{2} from both sides of the equation.
\frac{1}{2}t^{2}+t=-\frac{1}{2}
Subtracting \frac{1}{2} from itself leaves 0.
\frac{\frac{1}{2}t^{2}+t}{\frac{1}{2}}=-\frac{\frac{1}{2}}{\frac{1}{2}}
Multiply both sides by 2.
t^{2}+\frac{1}{\frac{1}{2}}t=-\frac{\frac{1}{2}}{\frac{1}{2}}
Dividing by \frac{1}{2} undoes the multiplication by \frac{1}{2}.
t^{2}+2t=-\frac{\frac{1}{2}}{\frac{1}{2}}
Divide 1 by \frac{1}{2} by multiplying 1 by the reciprocal of \frac{1}{2}.
t^{2}+2t=-1
Divide -\frac{1}{2} by \frac{1}{2} by multiplying -\frac{1}{2} by the reciprocal of \frac{1}{2}.
t^{2}+2t+1^{2}=-1+1^{2}
Divide 2, the coefficient of the x term, by 2 to get 1. Then add the square of 1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
t^{2}+2t+1=-1+1
Square 1.
t^{2}+2t+1=0
Add -1 to 1.
\left(t+1\right)^{2}=0
Factor t^{2}+2t+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t+1\right)^{2}}=\sqrt{0}
Take the square root of both sides of the equation.
t+1=0 t+1=0
Simplify.
t=-1 t=-1
Subtract 1 from both sides of the equation.
t=-1
The equation is now solved. Solutions are the same.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}