Solve for n
n=-20
n=16
Quiz
Quadratic Equation
5 problems similar to:
\frac { 1 } { 2 } n ( 1000 + ( n - 1 ) \times 200 ) = 32000
Share
Copied to clipboard
\frac{1}{2}n\left(1000+200n-200\right)=32000
Use the distributive property to multiply n-1 by 200.
\frac{1}{2}n\left(800+200n\right)=32000
Subtract 200 from 1000 to get 800.
\frac{1}{2}n\times 800+\frac{1}{2}n\times 200n=32000
Use the distributive property to multiply \frac{1}{2}n by 800+200n.
\frac{1}{2}n\times 800+\frac{1}{2}n^{2}\times 200=32000
Multiply n and n to get n^{2}.
\frac{800}{2}n+\frac{1}{2}n^{2}\times 200=32000
Multiply \frac{1}{2} and 800 to get \frac{800}{2}.
400n+\frac{1}{2}n^{2}\times 200=32000
Divide 800 by 2 to get 400.
400n+\frac{200}{2}n^{2}=32000
Multiply \frac{1}{2} and 200 to get \frac{200}{2}.
400n+100n^{2}=32000
Divide 200 by 2 to get 100.
400n+100n^{2}-32000=0
Subtract 32000 from both sides.
100n^{2}+400n-32000=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
n=\frac{-400±\sqrt{400^{2}-4\times 100\left(-32000\right)}}{2\times 100}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 100 for a, 400 for b, and -32000 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
n=\frac{-400±\sqrt{160000-4\times 100\left(-32000\right)}}{2\times 100}
Square 400.
n=\frac{-400±\sqrt{160000-400\left(-32000\right)}}{2\times 100}
Multiply -4 times 100.
n=\frac{-400±\sqrt{160000+12800000}}{2\times 100}
Multiply -400 times -32000.
n=\frac{-400±\sqrt{12960000}}{2\times 100}
Add 160000 to 12800000.
n=\frac{-400±3600}{2\times 100}
Take the square root of 12960000.
n=\frac{-400±3600}{200}
Multiply 2 times 100.
n=\frac{3200}{200}
Now solve the equation n=\frac{-400±3600}{200} when ± is plus. Add -400 to 3600.
n=16
Divide 3200 by 200.
n=-\frac{4000}{200}
Now solve the equation n=\frac{-400±3600}{200} when ± is minus. Subtract 3600 from -400.
n=-20
Divide -4000 by 200.
n=16 n=-20
The equation is now solved.
\frac{1}{2}n\left(1000+200n-200\right)=32000
Use the distributive property to multiply n-1 by 200.
\frac{1}{2}n\left(800+200n\right)=32000
Subtract 200 from 1000 to get 800.
\frac{1}{2}n\times 800+\frac{1}{2}n\times 200n=32000
Use the distributive property to multiply \frac{1}{2}n by 800+200n.
\frac{1}{2}n\times 800+\frac{1}{2}n^{2}\times 200=32000
Multiply n and n to get n^{2}.
\frac{800}{2}n+\frac{1}{2}n^{2}\times 200=32000
Multiply \frac{1}{2} and 800 to get \frac{800}{2}.
400n+\frac{1}{2}n^{2}\times 200=32000
Divide 800 by 2 to get 400.
400n+\frac{200}{2}n^{2}=32000
Multiply \frac{1}{2} and 200 to get \frac{200}{2}.
400n+100n^{2}=32000
Divide 200 by 2 to get 100.
100n^{2}+400n=32000
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{100n^{2}+400n}{100}=\frac{32000}{100}
Divide both sides by 100.
n^{2}+\frac{400}{100}n=\frac{32000}{100}
Dividing by 100 undoes the multiplication by 100.
n^{2}+4n=\frac{32000}{100}
Divide 400 by 100.
n^{2}+4n=320
Divide 32000 by 100.
n^{2}+4n+2^{2}=320+2^{2}
Divide 4, the coefficient of the x term, by 2 to get 2. Then add the square of 2 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
n^{2}+4n+4=320+4
Square 2.
n^{2}+4n+4=324
Add 320 to 4.
\left(n+2\right)^{2}=324
Factor n^{2}+4n+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(n+2\right)^{2}}=\sqrt{324}
Take the square root of both sides of the equation.
n+2=18 n+2=-18
Simplify.
n=16 n=-20
Subtract 2 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}