Solve for g
\left\{\begin{matrix}\\g=0\text{, }&\text{unconditionally}\\g\in \mathrm{R}\text{, }&k=252\end{matrix}\right.
Solve for k
\left\{\begin{matrix}\\k=252\text{, }&\text{unconditionally}\\k\in \mathrm{R}\text{, }&g=0\end{matrix}\right.
Share
Copied to clipboard
\frac{1}{2}kg-g-125g=0
Subtract 125g from both sides.
\frac{1}{2}kg-126g=0
Combine -g and -125g to get -126g.
\left(\frac{1}{2}k-126\right)g=0
Combine all terms containing g.
\left(\frac{k}{2}-126\right)g=0
The equation is in standard form.
g=0
Divide 0 by \frac{1}{2}k-126.
\frac{1}{2}kg=125g+g
Add g to both sides.
\frac{1}{2}kg=126g
Combine 125g and g to get 126g.
\frac{g}{2}k=126g
The equation is in standard form.
\frac{2\times \frac{g}{2}k}{g}=\frac{2\times 126g}{g}
Divide both sides by \frac{1}{2}g.
k=\frac{2\times 126g}{g}
Dividing by \frac{1}{2}g undoes the multiplication by \frac{1}{2}g.
k=252
Divide 126g by \frac{1}{2}g.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}