Solve for a
a=h-3
Solve for h
h=a+3
Quiz
Linear Equation
5 problems similar to:
\frac { 1 } { 2 } a h = \frac { 1 } { 2 } ( a + 3 ) ( h - 3 )
Share
Copied to clipboard
ah=\left(a+3\right)\left(h-3\right)
Cancel out \frac{1}{2} on both sides.
ah=ah-3a+3h-9
Use the distributive property to multiply a+3 by h-3.
ah-ah=-3a+3h-9
Subtract ah from both sides.
0=-3a+3h-9
Combine ah and -ah to get 0.
-3a+3h-9=0
Swap sides so that all variable terms are on the left hand side.
-3a-9=-3h
Subtract 3h from both sides. Anything subtracted from zero gives its negation.
-3a=-3h+9
Add 9 to both sides.
-3a=9-3h
The equation is in standard form.
\frac{-3a}{-3}=\frac{9-3h}{-3}
Divide both sides by -3.
a=\frac{9-3h}{-3}
Dividing by -3 undoes the multiplication by -3.
a=h-3
Divide -3h+9 by -3.
ah=\left(a+3\right)\left(h-3\right)
Cancel out \frac{1}{2} on both sides.
ah=ah-3a+3h-9
Use the distributive property to multiply a+3 by h-3.
ah-ah=-3a+3h-9
Subtract ah from both sides.
0=-3a+3h-9
Combine ah and -ah to get 0.
-3a+3h-9=0
Swap sides so that all variable terms are on the left hand side.
3h-9=3a
Add 3a to both sides. Anything plus zero gives itself.
3h=3a+9
Add 9 to both sides.
\frac{3h}{3}=\frac{3a+9}{3}
Divide both sides by 3.
h=\frac{3a+9}{3}
Dividing by 3 undoes the multiplication by 3.
h=a+3
Divide 9+3a by 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}