Solve for a
a=80\sqrt{6}-120\approx 75.959179423
Share
Copied to clipboard
\frac{1}{2}a\left(2\sqrt{2}+\sqrt{3}\right)\sqrt{3}=300
Factor 8=2^{2}\times 2. Rewrite the square root of the product \sqrt{2^{2}\times 2} as the product of square roots \sqrt{2^{2}}\sqrt{2}. Take the square root of 2^{2}.
\left(\frac{1}{2}a\times 2\sqrt{2}+\frac{1}{2}a\sqrt{3}\right)\sqrt{3}=300
Use the distributive property to multiply \frac{1}{2}a by 2\sqrt{2}+\sqrt{3}.
\left(a\sqrt{2}+\frac{1}{2}a\sqrt{3}\right)\sqrt{3}=300
Cancel out 2 and 2.
a\sqrt{2}\sqrt{3}+\frac{1}{2}a\sqrt{3}\sqrt{3}=300
Use the distributive property to multiply a\sqrt{2}+\frac{1}{2}a\sqrt{3} by \sqrt{3}.
a\sqrt{2}\sqrt{3}+\frac{1}{2}a\times 3=300
Multiply \sqrt{3} and \sqrt{3} to get 3.
a\sqrt{6}+\frac{1}{2}a\times 3=300
To multiply \sqrt{2} and \sqrt{3}, multiply the numbers under the square root.
a\sqrt{6}+\frac{3}{2}a=300
Multiply \frac{1}{2} and 3 to get \frac{3}{2}.
\left(\sqrt{6}+\frac{3}{2}\right)a=300
Combine all terms containing a.
\frac{\left(\sqrt{6}+\frac{3}{2}\right)a}{\sqrt{6}+\frac{3}{2}}=\frac{300}{\sqrt{6}+\frac{3}{2}}
Divide both sides by \sqrt{6}+\frac{3}{2}.
a=\frac{300}{\sqrt{6}+\frac{3}{2}}
Dividing by \sqrt{6}+\frac{3}{2} undoes the multiplication by \sqrt{6}+\frac{3}{2}.
a=80\sqrt{6}-120
Divide 300 by \sqrt{6}+\frac{3}{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}