Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{1}{2}-\frac{2}{9}x\left(\frac{8+1}{2}-\frac{3\times 5+3}{5}+\frac{1\times 12+1}{12}\right)
Multiply 4 and 2 to get 8.
\frac{1}{2}-\frac{2}{9}x\left(\frac{9}{2}-\frac{3\times 5+3}{5}+\frac{1\times 12+1}{12}\right)
Add 8 and 1 to get 9.
\frac{1}{2}-\frac{2}{9}x\left(\frac{9}{2}-\frac{15+3}{5}+\frac{1\times 12+1}{12}\right)
Multiply 3 and 5 to get 15.
\frac{1}{2}-\frac{2}{9}x\left(\frac{9}{2}-\frac{18}{5}+\frac{1\times 12+1}{12}\right)
Add 15 and 3 to get 18.
\frac{1}{2}-\frac{2}{9}x\left(\frac{45}{10}-\frac{36}{10}+\frac{1\times 12+1}{12}\right)
Least common multiple of 2 and 5 is 10. Convert \frac{9}{2} and \frac{18}{5} to fractions with denominator 10.
\frac{1}{2}-\frac{2}{9}x\left(\frac{45-36}{10}+\frac{1\times 12+1}{12}\right)
Since \frac{45}{10} and \frac{36}{10} have the same denominator, subtract them by subtracting their numerators.
\frac{1}{2}-\frac{2}{9}x\left(\frac{9}{10}+\frac{1\times 12+1}{12}\right)
Subtract 36 from 45 to get 9.
\frac{1}{2}-\frac{2}{9}x\left(\frac{9}{10}+\frac{12+1}{12}\right)
Multiply 1 and 12 to get 12.
\frac{1}{2}-\frac{2}{9}x\left(\frac{9}{10}+\frac{13}{12}\right)
Add 12 and 1 to get 13.
\frac{1}{2}-\frac{2}{9}x\left(\frac{54}{60}+\frac{65}{60}\right)
Least common multiple of 10 and 12 is 60. Convert \frac{9}{10} and \frac{13}{12} to fractions with denominator 60.
\frac{1}{2}-\frac{2}{9}x\times \frac{54+65}{60}
Since \frac{54}{60} and \frac{65}{60} have the same denominator, add them by adding their numerators.
\frac{1}{2}-\frac{2}{9}x\times \frac{119}{60}
Add 54 and 65 to get 119.
\frac{1}{2}-\frac{2\times 119}{9\times 60}x
Multiply \frac{2}{9} times \frac{119}{60} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{2}-\frac{238}{540}x
Do the multiplications in the fraction \frac{2\times 119}{9\times 60}.
\frac{1}{2}-\frac{119}{270}x
Reduce the fraction \frac{238}{540} to lowest terms by extracting and canceling out 2.
\frac{1}{2}-\frac{2}{9}x\left(\frac{8+1}{2}-\frac{3\times 5+3}{5}+\frac{1\times 12+1}{12}\right)
Multiply 4 and 2 to get 8.
\frac{1}{2}-\frac{2}{9}x\left(\frac{9}{2}-\frac{3\times 5+3}{5}+\frac{1\times 12+1}{12}\right)
Add 8 and 1 to get 9.
\frac{1}{2}-\frac{2}{9}x\left(\frac{9}{2}-\frac{15+3}{5}+\frac{1\times 12+1}{12}\right)
Multiply 3 and 5 to get 15.
\frac{1}{2}-\frac{2}{9}x\left(\frac{9}{2}-\frac{18}{5}+\frac{1\times 12+1}{12}\right)
Add 15 and 3 to get 18.
\frac{1}{2}-\frac{2}{9}x\left(\frac{45}{10}-\frac{36}{10}+\frac{1\times 12+1}{12}\right)
Least common multiple of 2 and 5 is 10. Convert \frac{9}{2} and \frac{18}{5} to fractions with denominator 10.
\frac{1}{2}-\frac{2}{9}x\left(\frac{45-36}{10}+\frac{1\times 12+1}{12}\right)
Since \frac{45}{10} and \frac{36}{10} have the same denominator, subtract them by subtracting their numerators.
\frac{1}{2}-\frac{2}{9}x\left(\frac{9}{10}+\frac{1\times 12+1}{12}\right)
Subtract 36 from 45 to get 9.
\frac{1}{2}-\frac{2}{9}x\left(\frac{9}{10}+\frac{12+1}{12}\right)
Multiply 1 and 12 to get 12.
\frac{1}{2}-\frac{2}{9}x\left(\frac{9}{10}+\frac{13}{12}\right)
Add 12 and 1 to get 13.
\frac{1}{2}-\frac{2}{9}x\left(\frac{54}{60}+\frac{65}{60}\right)
Least common multiple of 10 and 12 is 60. Convert \frac{9}{10} and \frac{13}{12} to fractions with denominator 60.
\frac{1}{2}-\frac{2}{9}x\times \frac{54+65}{60}
Since \frac{54}{60} and \frac{65}{60} have the same denominator, add them by adding their numerators.
\frac{1}{2}-\frac{2}{9}x\times \frac{119}{60}
Add 54 and 65 to get 119.
\frac{1}{2}-\frac{2\times 119}{9\times 60}x
Multiply \frac{2}{9} times \frac{119}{60} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{2}-\frac{238}{540}x
Do the multiplications in the fraction \frac{2\times 119}{9\times 60}.
\frac{1}{2}-\frac{119}{270}x
Reduce the fraction \frac{238}{540} to lowest terms by extracting and canceling out 2.