Solve for z
z=-x+\frac{120}{x}
x\neq 0
Solve for x
x=\frac{\sqrt{z^{2}+480}-z}{2}
x=\frac{-\sqrt{z^{2}+480}-z}{2}
Share
Copied to clipboard
\left(\frac{1}{2}z+\frac{1}{2}x\right)x=60
Use the distributive property to multiply \frac{1}{2} by z+x.
\frac{1}{2}zx+\frac{1}{2}x^{2}=60
Use the distributive property to multiply \frac{1}{2}z+\frac{1}{2}x by x.
\frac{1}{2}zx=60-\frac{1}{2}x^{2}
Subtract \frac{1}{2}x^{2} from both sides.
\frac{x}{2}z=-\frac{x^{2}}{2}+60
The equation is in standard form.
\frac{2\times \frac{x}{2}z}{x}=\frac{2\left(-\frac{x^{2}}{2}+60\right)}{x}
Divide both sides by \frac{1}{2}x.
z=\frac{2\left(-\frac{x^{2}}{2}+60\right)}{x}
Dividing by \frac{1}{2}x undoes the multiplication by \frac{1}{2}x.
z=-x+\frac{120}{x}
Divide 60-\frac{x^{2}}{2} by \frac{1}{2}x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}